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Chapter (1)

Units and Dimensions

Content

Fundamental and derivatives units and measurement system

Learning Objectives

1. The base quantities in the System International.

Name the most frequently used prefixes for SI units.

Change units (here for length, area, and volume) .

Defined by relationships to base quantities

Each quantities defined by a standard, and given a unit

Verify the correction of the equations.

Explain how to obtain the units of the physical constants

. Explain how to obtain the equation represents a special physical law

1.1. What is Physics?

Physics is a natural science concerned primarily with the principles and laws governing
the behavior of the inanimate world around us . As a science it involves many different
subjects . These subjects may be divided and grouped under one of two headings , classical
physics and modern physics . Classical physics is concerned largely with macroscopic bodies,
that is , with those phenomena in which the objects involved are large and can be seen with the
eye . Modern physics, on the other hand, is concerned primarily with the submicroscopic
world, that is, with those phenomena in which the structure and the behavior of individual
atoms and molecules are of prime importance.

1.2. Physical Quantities

© N LA WL

Physical quantities are often divided into:
a- Fundamental (Principal) quantities, usually are length, mass and time.

b- Derived quantities, are those whose defining operations based on other physical
quantities. Examples of quantities usually viewed as derived are velocity, acceleration, density
and volume.

1.2.1. Standard of Length

The first truly international standard of length (in 1960) was a bar of platinum — iridium
alloy called the standard meter, kept at the International Bureau of Weights and Measures near
Paris, France. The distance between two fine lines engraved on gold plugs near the ends of
platinum- iridium bar at 0 °C was defined to be one meter.

In the 1960’s and 1970°s the meter was defined as 1 650 763.73 wavelengths of orange —red
light emitted from a krypton-86 lamp. However, in 1983, the meter ( m) was redefined as the

distance traveled by light in vacuum during a time of (;) seconds.
299792 457
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1.2.2. Standard of Mass

Because platinum — iridium is an stable alloy, the SI unit of mass is the kilogram
(kg), 1s defined as the mass of a specific platinum- iridium alloy cylinder kept at the
International Bureau of Weights and Measures at Sevres, France. This mass standard
was established in 1887 and has not been changed since that time.

1.2.3.Standard of Time

Before 1960, the standard of time was defined in terms of the mean solar day
for the year 1900. (A solar day is the time interval between successive appearances
of the Sun at the highest point it reaches in the sky each day). The second was

1 1 1
defined as ( 0 ) 0 ) 2 ) of a mean solar day.

In 1967, the second was redefined to take advantage of the high precision
attainable in a device known as an atomic clock, which uses the characteristic
frequency of the cesium-133 atom
as the "reference clock." The second is now defined as 9,192,631,770 times the
period of vibration of radiation from the cesium atom.

1.2.4.Principal Quantities

1) Length  2)Mass 3) Time 4) Temperature 5) Electric Current 6) Luminous Intensity
7) Amount of Substance

1.2.5.Write the Physical Quantity

e A physical quantity is always the product of two quantities, a number and a unit;
for example (T =300.15K), (W =20N), (R=831451/.K "oml™) or (V =15m/s).

e In applications of mathematics in the sciences, numbers by themselves have no meaning
unless the units of the physical quantities are specified. It is important to know what these
units are, but the mathematics does not depend on them.

o Units obey the laws of ordinary algebra, and can be manipulated like numbers.

o The units associated with a physical quantity depend on the dimensions of that quantity.
There are seven physical quantities that are described as being dimensionally independent
(The Basic Quantities).

1.3. Systems of Units

Three different systems of units are most commonly used in science and
engineering. They are:

1-the meter-kilogram-second or mks system.

2-the Gaussian system, in which the fundamental mechanical units are the
centimeter, the gram, and the second (a cgs system).

3-the British engineering system (a foot- pound- second or fps system). Table 1.1
lists the three different systems of units.




Units systems
Quantity .
SI System Gaussian British System
OR (MKYS) OR (CGS)
Length m cm ft
Time S S S
Mass Kg gm Ib (Unit of force)

1.3.1.The International System of Units

Table (1.1) lists the three different systems of units

Physical Quantity Name of Unit | Symbol

Length meter m

Mass kilogram kg
Time second S
Electric Current Ampere A
Thermodynamic Kelvin K

Temperature

Amount of Substance mole mol
Luminous Intensity candela Cd

Notes: Write the unit always small letters but if derived from the name of the world write in

Capital letters.

Table (1.2) Physical Quantity in SI system

Some relation between units

lmm=10"m  &lkm=10m  &lum=10"m
lnm=10"m & IMm=10°m &1Gm=10"m
lyd =3 ft &lft=12in &lin=2.54 cm
Im= 3281ft &lmile = 1609 m

1 liter =10°cm’ & lgallon 3.79 liter
1Ib =4.448 N  &IN/m* =1451x107"* b/ in*

1.4 Dimensional Analysis

The word dimension has a special meaning in physics. It denotes the physical
nature of a quantity. Whether a distance is measured in units of feet or meters or
fathoms, it is still a distance. We say its dimension is length. The symbols used to
specify the dimensions of length, mass, and time are L, M, and T . We shall often
use brackets [ ] to denote the dimensions of a physical quantity.
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In summery; dimensions: In order to add or subtract two quantities, they must have
the same dimensions. Table 1.3 lists the dimension of basic and derived Quantities.

The QUANTITIES DERIVED UNITS The Dimension
@ LENGTH m [L]
9 E S
2= TIME [T]
R g
© MASS ke [M]
Derived | \ppa m L]
Quantities
VOLUME m’ [L?]
-1 -1
DYNAMIC VISCOSITY kgm?.S [MLIT]
VELOCITY m/s [LT]
ACCELERATION m/s’ LT
=2
FORCE kg.m.s [M LT
-1
FREQUENCY S [T7]
DENSITY Kg/m’ ML
kg.m1.s
ELASTIC MODULUS e [MLIT?]
2 &2
WORK(Energy) kg m®s M LT
2 o2
ENERGY POTENTIAL kg m”s [M L T
2 o2
ENERGY KINETIC kg m”s [M LT
2 -3
POWER kg m®s [M LT
-1 -2
PRESSURE kg-m=s [MLIT?]

Table (1.3) lists the dimension of basic and derived Quantities.




1.4.1 Uses of Dimensional Analysis

(1)- To verify the correction of the equations.
(2)- To obtain the units of the physical constants
(3)- To obtain the equation represents a special physical law

Example (1.1)

. S . 1
Show that the following equation is dimensionally correct? X =V + 54 t?

Where x distance ,V: velocity, a: accelaration ,t: time

Solution

The dimensional form of the equation (X =V +% at’)is

LHS = [L]
RHS =[LT™| x [T] + [LT7] x [T] =[] ~ ,THEN

RHS = LHS => The equation is dimensionally correct.

Example (1.2)

2

Check the validity of this expression X = ;at .

Where X distance , a: accelaration ,t: time

Solution

The dimensional form of the equation (X = ;atz) is
LHS = [L]

RHS =[LT?] x [1] =[L]

The equation is dimensionally correct.

Example (1.3)
Check the validity of this expression V =V, +at

Where V: velocity, a: accelaration ,t: time

Solution
LHS = [LT—l]

RHS =|LT™| + [LT?|[T] =[LT™]

The equation is dimensionally correct
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Example (1.4)

We have a=kr"V" where a acceleration of a particle ,uniform speed v in a circle of radius r,
k is a constant , Determine the values of n and m .

Solution
a=kr'v"
L.H.S. = Dimensions of R.H.S
LHS = [LT‘Z]
[L][72] =[] (LT ] = (L] [T
For [T]; -m =—2 - m=2
For [L]; n+m=1 — n=1l-m=1-2=-1
Example (1.5)

The period (T) of a simple pendulum is the time for one complete swing. How does (T)
depends on the mass (m) of the bob, the length (L) of the string and gravitational (g)?

Solution
Suppose that the required law is given by

T = (constant)m“L’ g

[M]o [L]O [T] = [M]“ [L]b I:LT_Z ]c _ [M]a [L]b+c [T ]—2c

For [M]; a=0
For[T]; 1=-2c - cz—%
For [L]; 0=0b+c - b=-c - b = 1

1 1
- L
T =(constant)L*g * =(constant) |—
g

Example(1.9)
The speed of a particle varies in time according to V = At—Bt’. What are the
dimensions of A and B?

Solution
v=dt-B¢ - [LT7] = [4][1] - [B][T]

Qg
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(L[] = [Alr] - (81T
So, (][] = [4][7] : [4] = [LT" ]
And, [L][7] = [B][1] : [B] = [LT ]

Example (1.10)

According to Newton’s law of gravitation there is an attractive force between particles

mm,
2

, where: F the force, r is the distance between the particles, mi,m, masses,

givenby: F=G
r

What are the dimensions of G and the unit of G in IS?
Solution
m,m,

2
r

F=G

Substituting the dimensions of various quantities, we have

(MLT?] = [G] [M] [M] /2] >[MLT?]=[G] [M ][]

(6] = [£] [m] 1]
Also; The unit of G is m3/Kg.s?

Example(1.11)

Einstein relation between the energy, E, of a body and its mass is given by :
E=mc*, where c is the free space speed of light . Check the correctness of this
equation.

Solution
LHS : [E]=|MLT?]

RHS : m02] = [MLZT‘2]

i.e. [ LHS ] =[ RHS ] , therefore the equation is correct .

>




1.5. Standard Form

Standard form or scientific notation is used to express magnitude in a simpler way.
In scientific notation, a numerical magnitude can be written as: A x 10", where 1 <A <10 and

n is an integer.

For each of the following, express the magnitude using a scientific notation.
1-20000000

2-345000

3-0.0000023
4-0.00000006

5-123402123100

Solution :
1- 2x10’
2— 3.45x10°
3-2.3x107°
4- 6x107"
5-1.2 x 10"

1.6. Prefixes, cont.

(PHYS 1010) -

Prefixes correspond to powers of 10.
Each prefix has a specific name and a specific abbreviation.

The prefixes can be used with any basic units.

They are multipliers of the basic unit.

Examples:

1 Km=10’m

lpg=10°g

Nome | Symbol | Factor | Nome | Symbol Factor
yotta Y 10% deci d 10!
zetta 7 10! centi C 102
exa E 10'8 milli m 103
peta P 101 micro m 10
tera T 1012 nano n 10
giga G 10° pico P 10712

mega M 10 femto f 1013
kilo K 103 atto a 10-18

hecto H 10° zepto z 1072
deca Da 10! yocto y 10724
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1.7. Conversion of Units

When units are not consistent, you may need to convert to appropriate ones.
Units can be treated like algebraic quantities that can cancel each other out.
Chain-link conversion

lday=24h

1h=60min

Imin=60s

Imile=1609 m

Ikm =1000 m

Ical =4.18 j

1 year=365 days

Conversion factor: (1min/60s) =1
( 60s/1min) =1

Converting feet to meters:

1 ft=30.48 cm=0.3048m (this is a conversion factor)

Or: 1 =(0.3048 m/ 1 ft)

Then:

320 ft x (0.3048 m/ 1 ft) =97.54 m

Note that the units cancel properly — this is the key to using the conversion factor correctly!
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1.8.Problems

Choose The Correct Answer in Each of The Followings:

1) (5.0 X 10%)x (3.0 x 1076) =
A) 1.5x 107
B) 1.5x 10!
C) 1.5x 10!
D) 1.5x 103

2) 5.0 x 105 +3.0 x 105 =
A) 8.0 x 10°
B) 8.0 x 10°
C) 5.3 x 10°
D) 3.5 x 106

3) The SI base units have the dimensions of:
A) mass, weight, work

B) energy, density, time

C) mass, length, time

D) weight, power, time

4) The SI base unit for mass is:
A) gram

B) pound

C) kilogram

D) ounce

5) A gramis:
A) 10°kg
B) 102 kg
C) 1kg

D) 10° kg

6) 1 mil is equivalent to 1609 m so the speed of 85 mil per hour equals ( in m/s) :

A) 15
B) 38
C) 85
D) 190

7) 1 ftis equivalent to 0.3048 m. A cube with an edge of 1.5 ft has a volume (m?) of:

A) 1.29 x 107
B) 9.88 x 102
C) 10.55

D) 9.56 x 102

(eg
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8) A sphere with a radius of 1.7 cm has a volume of in m*:
A) 2.06 x 107

B) 9.10 x 107

C) 3.66 x 1073

D) 0.11

9) A sphere with a radius of 1.7 ¢cm has a surface area of (in m?)
A) 2,13 x 107

B) 9.11 x 10

C) 3.63 x 107

D) 0.11 m?

10) A square with an edge of exactly 2 ¢cm has an area of (m?):
A) 4x107
B) 4x10~*
C) 2x102
D) 4x10?

11) A nanosecond is:
A) 10°s

B) 107s

C) 10®s

D) 105

12) During a short interval of time the speed v in m/s of an automobile is given by v = ar* + b,
where the time ¢ is in seconds. The units of a and b are respectively:

A) m-s%; m-s*

B) s*/m; s*/m

C) m/s%; m/s?

D) m/s*; m/s*

13) A sphere has a radius of 21 cm and a mass of 1.9 kg. Its mass density is about:
A) 4.9 x 107 kg/m?

B) 49 kg/m’

C) 2.0 x 102 kg/m?

D) 16 kg/m®

14) The dimension of force is
A) [MLT]

B) [ML!T]

C) [MLT?

D) [MLIT!]

©
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15) A quantity has a dimension of [ M L? T-?] then its unit is
A) m. Kg?.sec™
B) Kg. m2.sec?
C) Kg2. m.sec?
D) Kg. m?.sec™

16) A cubic box with an edge of exactly 3 cm has a volume of:
A) 27x107° m?

B) 27x10° m?

C) 9x103 m’

D) 9x10° m?

17) Six million seconds is approximately:
A) One day

B) Ten days

C) Two months

D) One year

18) Suppose 4 =B"C", where A4has dimensions LT, Bhas dimensions T, and Chas

dimensions LT?*. Then the exponent’s n and m have the values:
A) 2/3;1/3

B) 2;3

C) 4/5;-1/5

D) 1/5;3/5

19) The prefix centi equals
A) 10710

B) 1072

C) 107!

D) 107

2
then its dimension is

Kg
m.sec’

20) A quantity has a unit of

A) [M2LT]
B) [M2L'!T]
C) [MLT?]
D) [M2L'T?2]

21) The prefix micro equals
A) 1073

B) 10°

C) 107!

D) 10
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22) The prefix Mega equals
A) 107

B) 10°¢

C) 10°

D) 107

23) The dimension of velocity is
A) [LT?]

B) [L!T?]

C) [MT']

D) [LT!]

24) The dimension of acceleration is
A) [L2T]

B) [L'T]

C) [LT?]

D) [ML'T?]

25) If length of pendulum is increased by 2%. The time period will (7 =27 JZ )
g

A) Increases by 1%
B) Decreases by 1%
C) Increases by 2%
D) Decreases by 2%

26) The prefix milli equals
A) 1073

B) 10

C) 107!

D) 107

27) The prefix Tera equals
A) 107

B) 10"

C) 107!

D) 107

28) The dimension of density is
A)[LT]

B) [L'T]

C) [ML?]

D) [LT?]

@
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29) The dimension of volume is
A) [LT]

B) [L'T]

C) [L°]

D) [L7]

30) The dimensional formula of coefficient of viscosity 7 is (if F =6zn.r.v)

Where v: velicity, r: distance , F : force
A)[M LT

B) [M''L*T?]

C)[MLITH

D)[L'T]

31) The dimension of area is
A) [LT]

B) [L'T]

C) [L?]

D) [L?]

32) The dimension of frequency is
A) [LT]

B) [T']

C) [T*]

D) [T?]

33) Assume the equation X = A¢’ + Bt describes the motion of a particular object, with x the
length and ¢ the time. Determine the dimensions of the constants 4 and B.

A) [ L/T3, L/T]
B) [M''L?T?]
C) [ L/T2, L/IT4
D)[L'T,T?]

34) Someone is (60 in) tall. how tall is the person in centimeters?
A)23.6

B) 9.7

C) 1524

D) 16.764

oy



35) The standard kilogram is a platinum—iridium cylinder 39.0 mm in height and 39.0 mm in
diameter, See figure (1.1). What is the density of the material in (Kg/m?) :

A) p=214

B) p=2146427

C) p=214

D) p =500

’a

Figure (1.1)

36) A solid piece of lead has a mass 0f 23.94 g and a volume of 2.10 cm?. From these data,
calculate the density of lead in SI units (kilograms per cubic meter).

A) 1.140x10*

B) 1.140x10>

C) 11.40

D) 500

37) A rectangular building lot has a width of 75 ft and a length of 125 ft. Determine the area of
this lot in square meters.
A) 870.97

B) 87.088
C) 9375
D) 200

Q2: Which of the following equations are dimensionally correct?

(a)Vf:Vi+aX (b) y = (2m) cos (KX), where K = 2 m™
where V : velocity , a:acceleration and X : distance
Solution:

V,=V,+aX

(L1 )= (L1 |+ L7 | [L)= [LT7 ]+ 217
The equation is not dimensionally correct.
y = (2 m) cos (KX), where K = 2 m™

[Z]=[L]eos(2)= [L]

The equation is dimensionally correct.

[L] = [L]cos(2L_1 .L)
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Chapter (2)
Elasticity

Content
Elastic and Plastic materials — Stress — Strain — Thermal stress - Stress-Strain Curve — Young
modulus — Shear modulus — Bulk modulus — Strain energy.
Learning Objectives
1. Understand the principle concepts of the elasticity
2. For tension and compression, apply the equation that relates stress to strain and Young's
modulus.
3. Distinguish between yield strength and ultimate strength.
4. For shearing, apply the equation that relates stress to strain and the shear modulus.
5. For hydraulic stress, apply the equation that relates fluid pressure to strain and the bulk
modulus.

2.1: Mechanical Properties of Metals
Many materials may be deformed when external forces exert on them.

o Elasticity materials: If the material restore to its original shape and size after
removing the load from it, it's said to be elastic.

o Plastic materials:

If the material fails to restore its original dimensions after removing the applied stress, it's

said to plastic.

e Elastic Modulus: Is the constant of each matter and equal ratio between stress and
strain

e Concepts of Stress and Strain

2.1.1 Stress (°)

It is the instantaneous perpendicular force (F) per unit area (A).

1.e. is related to the force causing the deformation
c = — N/m’ or Ib/in®>  (2.1)

2.1.2 Strain (¢)
Is a measure of the degree of deformation?
2.1.3 Stress —Strain Diagram
Let us consider a typical stress —strain _diagram for a ductile metal as shown in

Figure (2.1)

The stress and strain are proportional until point a is reached. The point a is called
the proportional limit of the material.

From a to b, stress and strain are not proportional, but nevertheless, if the load is
removed at any point between o and b , the curve will retraced and the material will
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return to its original state. In the region ob , the material is said to be elastic or
exhibit elastic behavior and, the point b is called the elastic limit, or the yield point.

tensile T elastic limit
stress (yigld point)
yield sress b ) , d
ag plastic deformaion  Fracture point
proportional limit
Elastic behavior
yield strain stra'in

Figure (2.1) stress —strain diagram

Up to point b ( elastic limit or yield point), the forces exerted by the material
are conservative, when the material returns to its original shape, work done in
producing the deformation is recovered. The deformation is said to be reversible.
(the yield point is a point beyond proportional limit. At this point the removal of the
loading results in permanent strain)

Further increase of the load beyond b produces a large increase in the strain
(even if the stress decreases) until a point d is reached at which fracture takes place.
From b to d, the material is said to undergo plastic deformation. A plastic
deformation is irreversible.

Stress required to cause actual fracture of a material is called the breaking stress or the
ultimate strength. If large plastic deformation takes place between the elastic limit (b) and the
fracture point (d), the metal is said to be ductile. If, however, fracture occurs soon after the
elastic limit (b) is passed, the metal is said to be brittle.

Safety Factor:

e For all engineering materials it is not allowed to apply stress on any material
beyond its elastic limit.

e Even within the elastic region the stress must be smaller than the proportional
limits.




o Also a factor of safety is used by all international standards to keep the
material safe to use . So that the allowed stress; is a fraction of the stress at
the proportional limit.

Stress at the proportional limit

Safet tor = 2.2
afety Jactor Allowed stress (22)
2.1.4 Hooke’s Law
“The Stress is directly proportional to the Strain”
o=Ye

Y: is the Elastic modulus or Young’s modulus
The greater the modulus, the stiffer the material, or, the smaller the strain results

from the application of the stress. Figure (2.2)
e [Ifarod is stretched by a force Fi distance AL, then Unicad
_ AL _ 14
Y= ANL F= L AL (2:3) 2 Slope = modulus of
E elasticity -
Since Y, A and L is constant for each material,
Then we can write K = Y4 (Constant Force)
_ ) L Load
So, we can write Equation (2.1)as F;, = KAL (2.4) 0
&
Strain
Figure (2.2)

Note That;

1 Tb/in? (psi) = 6891 N/m? (Pa) 1 N/m? (Pa)= 1.451%10 Ib/in? (psi)

2.2 Elastic Modulus

The stress required to produce a given strain depends on the nature of the material
under stress. The ratio of stress to strain, or the stress per unit strain, is called an
elastic modulus of the material. Corresponding to the three types of strains (tensile,
shear, and volume strain) we have three elastic modulus, Figure (2.3):

e Young's modulus of elasticity; Y : It corresponds to tensile strain .

e Shear modulus (or modulus of rigidity); S : It corresponds to shearing strain.

¢ Bulk modulus (or volume modulus); B: It corresponds to volumetric strain .
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Elastic Modulus
YOUNG'S SHEAR BULK (VOLUME)
(TENSILE) (RIGIDITY) MODULUS
MODULUS MODULUS
Y=STRESS/STRAIN S=STRESS/STRAIN B=STRESS/STRAIN
Stress Different Types
v .
A AL 4
I T;
F
Tension Compression Shear
(a) (b) (c)

The response to different types of stress can differ
greatly for the same material.

Figure (2.3)
Strain
A
Elastic Def@tion Plastic}eformation

2.2.1. Young's Modulus: (Y) It is the ratio between the stress and the strain ,See Figure (2.4).
F/ A c

Y=—"+= — N/m? or Ib/in” (2.5)
AL/ L €
Strain T , Young's modulus
ALAL - L , _ Stress F/A
( s
Stress

Figure (2.4)




Where:

tensile Stress (¢ )

It is the instantaneous perpendicular force (F) per unit area (A).

6= — N/m’ or Ib/in’ (2.6)

tensile Strain (&)
It is the ratio between the change in length ( AL ) and the original length (Lo).

AL . .
€ = T 2.7 , AL : 1s the elongation or stretch

4

Example (2.1)
A 80 Kg mass is hung on a steel wire having 18 m long and 3 mm diameter. What is the
elongation of the wire, If Young's modulus for steel is 21 x 10! N/m??

Answer

We have Y = L FL,

0

so the elongation is AL =

aL=—2098  I8 4 0095m =9.5mm
£(0.0015)  21x10

Example (2.2)

A piece of copper originally 0.305m long is pulled in tension with a stress of
276x10° Pa. If the deformation is entirely elastic, what will be the resultant elongation?
Yeu=11x10"N/m?

Answer

We have Y = F/A

then:

0
_FL, oL, (267x10°)(0.305) _

7y Ix10" 0.76x10°m

AL

Example (2.3)
A telephone wire 120 m long and 2.2 mm in diameter is stretched by a force of 380 N.

What is the longitudinal stress? If the length after stretching is 120.10 m, what is the
longitudinal strain? Determine Young’s modulus for the wire?

Answer

A=7r’=7(1.1x107)" =3.8x10°m’

oot o 380 —=10"N/m’ =100MPa
A 3.8x10

AL =120.1-120.1m
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e=L 01 _g330°
120

= W =12x IOION/I'I'I2 =120GPa
. X

LO
o _ 10°N/m’
&

Example (2.4)

A structure steel rod has a radius 9.5 mm and a length 81 cm.
A force F of 6.2 x 10* N stretches it axially. (Y,
(a) Calculate the stress in the rod?

(b) Calculate the elongation of the rod under this load?
(c) Calculate the strain?

Answer
4
Tensile Stress(a)=£= F2 = 6'2X10_3 5 =2.19x10° N/m’
A 7mr 7 (9.5x107)
TensileStrain € = AL Y = g
L, e

8
AL =exL, =%><L0 =%x81x102 =8.87x10™m
X

8
g= T 210w
Y 2x10

Example (2.5)

A certain wire stretches 0.90 cm when outward forces with magnitude F are applied to each
end. The same forces are applied to a wire of the same material but with three times the

diameter and three times the length. The second wire stretches:

=2x10"N/m’

)

Answer
s . FxL
The Young’s modulus for the wire Y =
ALx A
5 . Fx Ll
The Young’s modulus for the wire (1) Y = (1)
AL x 4
s . FxL
The Young’s modulus for the wire (2) ¥ = . (2)
AL, x 4,

The equation (1) equals the equation ( 2)
FxL, FxL,
= =
AL x4, AL, x A4,
AL x4, xL,
A, x L,
AL = 0.9x (7 x17)x3L, _ 0.9x 7 x7’ x3L,

2

(rx(3r)’ xL, x99 x L,

=0.3cm




2.2.2. Shear Modulus (Elasticity in Shape) (S)

Shear Modulus (S) = M=(F/A)/e= (F/A)/(Ax/h)  Nm*  or  Ibfin’
Shear Strain

Where

F .
Shear Stress= Xt N/m’ or Ib/in®

Shear modulus: Elasticity of shape

When an object is subjected to a force parallel to one of its faces while the
opposite face is held fixed by another force , the stress in this case is called a shear
stress, see Figure ( 2.5) . The shear stress is defined as the ratio of the tangential
force F to the area A of the face being sheared . The shear strain is defined as the
ratio of the horizontal distance x that the sheared face moves, to the height of the
object h (assuming that, for small distortions , no change in volume occurs with
this deformation ). Thus the shear modulus is :

S = shear stress/shear strain

Shear stress = F/A
Shear strain=Ax/h = tand=6¢ (ifx<<h)
F

§=A or S=§. (2.8)

Ax
h

x|
| —

h_
Ax

The shear modulus ( or modulus of rigidity) , S has a significance for solid materials
only. The SI units of S are that of stress, i.e. N/m?,
When a material is subjected to shear stress the volume will not change.
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Shear Modulus: Elasticity in Shape.

e shear stress ~ F/A

L gShear strain T Az/hC
fe—

Ax A
+| F
rzﬁ" =
-rl H I
Ao
-F
Fixed face

(@)

(b)

Figure (2.5)
Note : Only Solids have shear and Young’s Moduli(Liquid can flow).

Example (2.6)

A horizontal force of 1.2 N is applied to the top of a stack of pancakesl3 cm in diameter and
9 cm high. The result is a 2.5 cm shear. Find the shear modulus.

Answer

ShearModulis(S) = (S)/@ =(F/A)/(Ax/h)

s=fh_ Fho_ 120D s
ANe 7P AY 2(0.13/2)°%(0.025)
Example (2.7)

A tangential force of 1000 N exerted upon the upper surface of a cube of 10 cm edge, if the
result displacement was 0.1 cm then the Shear Modulus of the cube material equals
F

= or S—F h

S =
A Ax

A4
Ax
h

-2
1000 10x107 _ o

T (10x1072)% 0.1x10°2

&




2.2.3. Bulk Modulus: Volume Elasticity

Bulk modulus is defined as the negative ratio of volume stress to the volume
strain . When a force is applied normally to the surface of a body and a change in
volume takes place, the strain is known as volume strain . It is measured by the
change in volume per unit volume, that is:

Volume strain = AV/ V
Where Av is the change in volume produced by the force F in the original volume V
By definition the bulk modulus of elasticity is given by :

B = volume stress /volume strain

F
AP XV
__ A , B=-— 2.9
B==3xy ™ AV 29)
14

The minus sign is included in the definition of B because an increase in applied
pressure causes a decrease in volume ( negative AV) and vice versa. The SI units of
B are the same as those of pressure, i.e. N/m? .

Figure (2.6) shows that when a cube of solid is undergoes a change in volume
but no change in shape , the cube is compressed on all sides by forces normal to its
six faces.

F
B
AN iy P Bulk modulus:

, ¢ .
- F— E F \ / AP
1
1

! . HFNV  B=-
! % 3 c P = pressure
:./___:___;:\ / \ V = volume
h V'AV T

£

Figure (2.6)

It is important to note that solids and liquids have a bulk modulus. Liquids do
not exhibit Young’s modulus or shear modulus because a liquid does not sustain a
shearing stress or a tensile stress. If a shearing force or a tensile force is applied to a
liquid , the liquid simply flows in response .
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Compressibility. K

The reciprocal of the bulk modulus is called the compressibility.
K=1/B=-(1/V).AV/AP (2.10)
Note : Booth solids and liquids have Bulk Moduli.

Example (2.8)

A cube with 2.0 cm sides is made of material with a bulk modulus of 4.7 X 10° N/m?. When it
is subjected to a pressure of 2.0 X 10° Pa the length in cm of its sides is:

Solution
Ap AP
B="t S AV =",
NG = AV 2 |4
p
5
y o 2x10 —(2x107) =3.4x107 m’ =3.4cm’
47x10
V—AV=8-34=46cm’
L=34.6 =1.66cm
Example (2.9)

A wire of length 120cm and diameter 0.82mm, supported from one end, A 5.3kg in the
other end. Find:

a) The stress.

b) The strain.

¢) The strain energy If Y = 1.2x 10'2 N/m? and g = 9.80m/sec?

Solution
r:O'282 =4.1x107m and m=5.3Kg
5.3)9.8
ThestreSSZEzmgz ( ) 5 =9.835x10° N / m?
4 4 ﬁ(4.1x10_2)
St 9.835x10° _
The strain = ress _ —=8.2x10 !
Y 1.2x10
Example (2.10)

A uniform wire of length 20cm density 0.78gm / cm?® and mass 16gm stretched by a distance
1.2mm when 8kg is supported on it , Find :

a) The stress.

b) Young's modulus

c¢) The strain energy
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Solution
= E =2.05cm’
7.8

Volume V =

N

But V=A . I = A=) =29
L~ 20

8)9.80
Stress=£=mg=() =
A 1x10

=0.1em® =1x107°m?

=7.84x10°N/m*

_ Stress x0.20

ButStress=Y& = Y——_3=1.31><109N/m2
L 1.2x10
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2.3. Problems
Choose The Correct Answer in Each of The Followings:

1) It characterizes the response of an object to changes in a force of uniform magnitude
applied perpendicularly over the entire surface of the object. An object subject to this type
of deformation undergoes a change in volume but no change in shape

A) Young’s modulus

B) Bulk modulus

C) Stress

D) Shear modulus

2) The material ultimately breaks as the stress is increased more than the:
A) Elastic limit

B) Elastic behavior

C) Breaking point

D) Plastic behavior

3) It returns to its original shape when the deforming forces are removed.
A) Elastic object

B) Inelastic object

C) Break object

D) Plastic object

4) The measure of the resistance to motion of the planes within a solid, parallel to each
other.

A) Young’s modulus

B) Bulk modulus

C) Stress

D) Shear modulus

5) Type of deformation occurs when an object is subjected to a force parallel to one of its
faces (tangential force) while the opposite face is held fixed by another force

A) Young’s modulus

B) Bulk modulus

C) Stress

D) Shear modulus

6) The measure of the degree of deformation
A) Elastic modulus

B) Strain

C) Stress

D) Force
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7) The measure of the resistance of a solid to the change in its length.
A) Young’s modulus

B) Bulk modulus

C) Stress

D) Shear modulus

8) A 100 kg load is hung on a wire of length 4.00 m, cross sectional area 1 x10™* m?, and
Young’s modulus 8.0x10'°N/m?. What is its increase in length?

A) 9.8x10*m

B) 4.9x10*m

C) 4.9x10°m

D) d.9.8x10°m

9) Young's modulus can be correctly given in:
A) N.m?
B) N/m?
C) N.m/s
D) joules

10) Young's modulus is a proportionality constant that relates the force per unit area
applied perpendicularly at the surface of an object to:

A) the shear

B) the fractional change in volume

C) the fractional change in length

D) the pressure

11) If the material fails to restore its original dimensions after removing the applied stress,
it said to be in

A) elastic limit

B) elastic behavior

C) breaking point

D) plastic behavior

12) Strain can be measured in:
A) N/s?

B) j.m?

C) w/m

D) none of these
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13) The ratio of the stress to the resulting strain is
A) Elastic modulus

B) Strain

C) Stress

D) Force

14) A force of 5000 N is applied outwardly to each end of a 5.0 m long rod with a radius
of 34.0 mm and a Young's modulus of 125X10® N/m?. The elongation of the rod is(in mm):
A) 0.022

B) 0.0040

C) 0.11

D) 0.55

15) A shearing force of 50 N is applied to an aluminum rod with a length of 10 m, a cross-
sectional area of 1.0 x10~° m?, and shear modulus of 2.5 x10'*N/m?. As a result the rod is
sheared through a distance of (in mm):

A) Zero

B) 2

C) 20

D) 200

16) A child slides across a floor in a pair of rubber-soled shoes. The friction force acting on
each foot is (20.0N). The foot- print area of each shoe sole is (14.0cm*), and the thickness

of each sole is (5 mm). Find the horizontal distance by which the upper and lower surfaces

of each sole are offset (in mm). The shear modulus of the rubber is (3.00MN /m?).

A) 0.85
B) 1.15
C) 1.66 x102
D) 2.4x107

17) Measures the resistance of solids or liquids to changes in their volume
A. Young’s modulus

B. Bulk modulus

C. Stress

D. Shear modulus

E. None of them

18) The bulk modulus is a proportionality constant that relates the pressure acting on an
object to:

A) The shear

B) The fractional change in volume

C) The fractional change in length

D) Young's modulus
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Stress-strain curve for an elastic solid.

Stress
(MPa)

Strain
0 0.002 0.004 0.006 0.008 0.01

From the shown figure answer,19, 20, 21,22

19) Evaluate Young’s modulus for the material whose stress—strain curve is shown above
A) 1x10° Pa

B) 2x 10° Pa

C) 2x10" Pa

D) 1x 10" Pa

20) The point B is
A) Elastic limit

B) Elastic behavior
C) Breaking point
D) Plastic behavior

21) The point A is
A) Elastic limit

B) Elastic behavior
C) Breaking point
D) Plastic behavior

22) The region C is
A) Elastic limit

B) Elastic behavior
C) Breaking point
D) Plastic behavior

23) The measure of the resistance of a solid to the change in its length.

A. Young’s modulus
B. Bulk modulus
C. Stress

D. Shear modulus
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24) Measures the resistance to motion of the planes within a solid parallel to each other.
A. Young’s modulus

B. Bulk modulus
C. Stress
D. Shear modulus

Q2) The Young’s modulus for bone is 1.50x10" Pa . The bone breaks if stress greater than
1.50x10° Pa is imposed on it.

(1) What is the maximum force that can be exerted on the femur bone in the leg if it has a minimum
effective diameter of 2.50cm ?

(2) If this much force is applied compressively, by how much does the 25.0cm long bone shorten?
Solution:
(1)
diameter=2r =2.5cm = r =1.25cm =1.25x107 m
A=m" =3.14(1.25x107) =4.91x107* m’

Stress=5:»1.5x108=%:>F=1.5x108x4.91x10'4=7.37><104N
A 491x10
2)
F
. 4 )
Y:tenszlestress: A _y_ FxL :>1.5><1010:7'37X10 N><25><410
tensilestrain AL ALx A ALx4.91x10"

L
_ 7.37x10" Nx25x107m
1.5x10"° N/m* x4.91x10™* m*

=2.50x10"m =2.50mm

Q3) We analyzed a cable used to support an actor as he swung onto the stage. Now
suppose the tension in the cable is 940N as the actor reaches the lowest point. What

diameter should a 10m long steel cable have if we do not want it to stretch more than
0.50cm under these conditions?

if Young’s modulus= 20x10" N/m?

F
y=A oy FL_y BL_ O0xA0) gy g0,
AL AAL YAL (20x10")x(0.5x107%)
L
We have d=2rand A=nr’
9.4x107

A=7r?=94x10° =>r= — =1.73x107 =d =2r ~3.5x107 m =3.5mm
‘ T
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Q4) A steel wire of diameter 1mm can support a tension of 200N A steel cable to
support a tension of 20000~ should have diameter of what order of magnitude?

d=lmm=2r=r=0.5mm=0.5x10"m

We have g=§ A=rnr’ )

sressei-B o B 5 02x10°N _ 20x10°N

A4, mr omrn m(0.5x107)Ym’ a(rn)m’
2 (05 x107)? x20x10’
’ 0.2x10°

r,=5x10"m=d=2r,=2x5x10" =10x10"m =1cm

=25x10"m’ =
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Chapter (3)
Fluid Mechanics

Content

Density — Relative density — Relative density measurements - Pressure — Pascal’s principal -
Archimedes' Principle - Law of floatation - Continuity equation - Bernoulli's Equation —
application - Venturi tube- surface tension - Surface energy — Adhesive force — Cohesive force
- Surface tension and spherical shape - Contact angle - Capillarity.

Learning Objectives

1. Distinguish fluids from solids.

2. When mass is uniformly distributed, relate density to mass and volume.

3. Apply the relationship between hydrostatic pressure, force, and the surface area over
which that force acts.
Describe how an open-tube manometer can measure the gauge pressure of a gas.
Identify Pascal's principle.
Describe Archimedes' principle.
Describe steady flow, incompressible flow, nonviscous flow, and irrotational flow.
Identify that Bernoulli's equation.
. State the surface tension - Adhesive force — Cohesive force.
3.1 Fluids

Matter in the solid state generally offers considerable resistance to all changes in shape.
Liquids and gases, in contrast, do not have rigid structure or form. These states of matter —
which together we call fluids, are easily altered in shape.
Liquids generally have very low compressibility so they deform in shape without appreciable
change in volume. Gases on the other hand, readily change volume and expand to fill
completely any container. Neither liquids nor gases can permanently sustain a shearing stress.
It is customary to classify matter into solids and fluids.

A fluid is a substance that can flow. Hence the term fluid includes liquids and gases . Generally
, a fluid is a collection of molecules that are randomly arranged and held together by weak
cohesive forces and by forces exerted by walls of a container. Fluid static is the study of fluids
at rest.
Density (p): p=M /V its unit kg/m’ & Dimension [ML’]

LN LA

Relative Density (pr) the ratio between the density of material to the density of the water
( same volume).

Iore = Iomatter /pwater

3.2 Pressure

When fluids are at rest , there are no shear forces. The only stress that can be exerted on
an object submerged in a static fluid is one that tends to compress the object from all sides . In
other words , the force exerted by a static fluid on an object is always perpendicular to the
surfaces of the object. See Figure (3.1)
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Fluid static | . ‘ /

Figure (3.1)

It is convenient , therefore , to describe the force F acting on a fluid by specifying the pressure
p , which is defined as the magnitude of the normal force per unit surface area . If F is the
magnitude of the normal force exerted on a surface area A at a given level , then the pressure
p of the fluid at this level is defined as the ratio F/A; thatis :

P=F/4 Pascal (3.1)

The Pressure P is a scalar quantity.
1 Pascal =1 N/m?

1 atm. = 1.013 x 10° Pa = 760 torr
1 bar = 10° Pa

3.3: Variation of Pressure with Depth
Assume we have an imaginary cylinder of incompressible liquid at rest of density p and cross-
sectional area A and depth h from surface see Figure (3.2)

The pressure of liquid on the bottom face is P and on top face is P.
The upward force on bottom face is Fi=PA

The downward force on the top face is F2=-P, A

The weight of the cylinderis Mg=-p A g(y2-y1)=-pAhg

The cylinder is in equilibrium, net force = zero
PA-PA+Mg=0 ORPA-PA+ Apgh=0—>P =P+ pgh (3.2)

P, is atmospheric pressure, P, = 1 atm = 1.013 x 10° Pa or N/m? Figure (3.2)

Remark:
The Pressure with depth P =F + p gh

The Pressure at the depth h below sea level P =P+ pgh

The Pressure at the height h high above sea level P =P, - p gh




ZI Checkpoint 1

The figure shows four
containers of olive oil.
Rank them according
to the pressure at

depth £, greatest first.

(a) (b) () (d)

Figure (3.3)
Answer: All the pressures will be the same. All that matters is the distance h, from the
surface to the location of interest, and h is the same in all cases.

Example (3.1)
The mattress of a water bed is 2.00m long by 2.00m wide and 30.0cm deep. Find the

weight of the water in the mattress. Assuming Density of water p =1000kg /m’
Answer

Density of wateris p=M /V =M = pV =(1000)(2)(2)(0.3)=1.2x10’ kg

weight of the water = Mg = (1.2x10%)(9.8) =1.18x10" (kg.m / sec’) or N

Example (3.2)
What is the pressure due to water at a depth of 7.5 Km below sea level?

The water density pw = 1.025 x 10° Kg / m’.
Answer
P =F+ pgh
P =1.013x10°+ 1.025 x 10°x 9.8 x 7.5 x 10°
P =753 x10'N /m*= 753 MPa

Example (3.3)
What is the pressure at a point 2000m high above sea level assuming that the density

of air is approximately constant and pair = 1.22 Kg / m® ?
Answer
P :I)() + pair gh
P =1.013 x 10°= 1.22 x 9.8 x 2000
P =774 x10°N/ m’

3.4 Measurement of Pressure
3.4 .1The Mercury Barometer

The mercury barometer is a long glass tube that has been filled with mercury, as in
Figure (3.4). The space above the mercury column contains only mercury vapor whose
pressure is so small at ordinary temperatures that it can be neglected. It is easily shown (see
Equation (3.2) that the atmospheric pressure Py s :
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Py = pgh
Most pressure gauges use atmospheric pressure as a reference level and
measure the difference between the actual

P=( y

~
p=0
v p=0
Level 2 _ _

h

o
f
Level 1 \ /(W

(a) (0)

Copyright © 2014 John Wiley & Sons, Inc. Allrights reserved.

Figure (3.4)

pressure and atmospheric pressure, called the gauge pressure. The actual pressure at a point in a
fluid is called the absolute pressure. Gauge pressure is given either above or below atmospheric
pressure. A gauge that reads pressures below atmospheric pressure is usually called a vacuum
gauge.

The pressure of the atmosphere at any point is numerically equal to the weight of a
column of air of unit cross-sectional area extending from that point to the top of the
atmosphere. The atmospheric pressure at a point, therefore, decreases with altitude. There are
variations in atmospheric pressure from day to day since the atmosphere is not static. The
mercury column in the barometer will have a height of about 76 cm at sea level, varying with
atmospheric pressure. A pressure equivalent to that exerted by exactly 76 cm of mercury at 0°C
under standard gravity, g = 9.80665 m/sec?, is called one atmosphere (1 atm). The density of
mercury at this temperature is 13595 kg/m®. Hence, one atmosphere is equivalent to

Po = pgh
I atm = 13595 x 9.80665 x 0.76
latm=1.013x 10° N /m?
note that ; (N/m*>=Pa)

It must be noted that for a given pressure, the height h of the mercury column does not
depend on the cross- sectional area of the vertical tube.

For a given pressure Po , the height depends on the value of the acceleration due to
gravity g at the location of the barometer and on the density p of the mercury.




3.4 .2The Open —Tube Manometer

The open tube manometer, Figure (3.5) , measure gauge pressure . It consists of U-
shaped tube containing a liquid, one end of the tube being open to the atmosphere and the other
end being connected to the system (tank) whose pressure P we want to measure ( unknown).
The pressures at points A and B must be the same. Equating the unknown pressure P to the
pressure at point B , we see that

P =R+ pgh

Or P —-PB=pgh

Figure (3.5)

The difference (P - Po ) is called the gauge pressure , while the pressure P is called
the absolute pressure. For example the pressure you measured in your bicycle tire
is gauge pressure .

3.5 Pascal’s Principle:
Figure (3.6) shows a liquid in a cylinder that is fitted with a piston to which we may
apply an external pressure Py . The pressure P at any arbitrary point C a distance h
below the upper surface of the liquid is given by Equation (3.2) , or

P =R+ pgh
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Figure (3.6)

Let's increase the external pressure by an arbitrary amount AP . Since liquids are
virtually incompressible, the density p in the above equation remains essentially constant
during the process. The equation shows that , the change in pressure AP at the arbitrary point
C is equal to APy . This result was stated by the French scientist Pascal and is called Pascal’s
principle which usually given as follows : Pressure applied to an enclosed fluid is transmitted
undiminished to every portion of the fluid and the walls of the containing vessel. An important
application of Pascal’s law is the hydraulic press illustrated in Figure (3.7)

A force of magnitude F; is applied to a small piston of surface area Ai. The pressure is
transmitted through an incompressible liquid to a larger piston of surface area A, . Because the
pressure must be the same on both sides , we have : P =F, /4 =F /A or

[ YA X (33)
A 4

1

Therefore, the force F, is greater than the force Fi by the factor A, /A..
Hydraulic brakes, car lifts, hydraulic jacks, and forklifts all make use of this
principle.

.. a large output
force.

A small input

Output
force produces ...

Input

i 4

Figure ( 3.7)




3.6 Archimedes’ Principle
The magnitude of the buoyant force always equals the weight of the fluid displaced by the
object.
If a body is totally or partially immersed in a fluid, the buoyant force will equal to the
weight of displaced fluid
% Verification of Archimedes principle

If a cube of height h immersed in a liquid of density pauig, Figure ( 3.8), the pressure at top

and bottom faces are P1 and P; respectively, Where Po=Pi+pgh @
1. The pressure at the bottom of the cube causes an upward force |
equals PA.
2. The pressure at the top of the cube causes a downward force | I
equals Py A.
Where A is the area of face of the cube, -
3. the resultant force is the buoyant force “B” Mg

B=(P2-Pi1) A=puid gh A= pmia g Figure ( 3.8)

V is the volume of the liquid displaced by the cube.
Because the product (pV) =mass of liquid , so

B =Mg=p.gV (34)

Or

F,=F,-F, (3.9)
But, as known,

F,=P, 4 and F, =P A

Also,
P=F + pgh, and P=F + pgh,
Therefore,
F=(B + pgh)d and F=(F,+ pgh)A
Then

Fy=(F + pgh)A4d - (B, + pgh)4
= FRA+ pghd-PAd—-pgh Ad=pghd - pgh 4
Fy,=pgA(h,—h)=pgAH ,where H =h, - h,

F,=pgAH =pgV =mg, where m=pV
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Special cases:

Case 1: Totally Submerged Object
When an object is totally submerged in a fluid of density p,,, , the magnitude of the upward

buoyant force is:
B = Mg=p,,gV,

object

Where: Vobjeet is the volume of the object. If the object has a mass M and density p,,,, , its

weight (gravitational force) is equal to:
F;; = Mg= Povicct& Vobject

and the net force on it is:

F,=F,-B= (pobject Pria )8 Vojeet

1. Hence, if p,,., < pg., > then the downward gravitational force is less than the buoyant

force, and the object float, Figure ( 3.9).

Figure ( 3.9)

2. If the p,.. > P > then the upward buoyant force is less than the downward

gravitational force, and the object sinks,Figure ( 3.10).

Figure ( 3.10).

3. Ifthe p,,.. = P > the net force on the object is zero and it remains in equilibrium.

Thus, the direction of motion of an object submerged in a fluid is determined only by the
densities of the object and the fluid.




Case 2: Floating Object
Now consider an object of volume Vpject and density p,,.., < p,,, floating on the surface of a

fluid—that is, an object that is only partially submerged, Figure ( 3.11).

AB

VF::

Figure ( 3.11)

In this case, the upward buoyant force is balanced by the downward gravitational force acting
on the object. If Vauiq is the volume of the fluid displaced by the object (this volume is the same
as the volume of that part of the object that is beneath the surface of the fluid), the buoyant
force has a magnitude

B = pya€ Viuia

Because the weight of the object is
Fjg = objectg Vabject
and because F; = B, we see that

p objectg Vobject = IO ﬂuidg Vﬂuid

or,
Pruid _ Vonjee
p object Vﬂuid

Example (3.5)

In a car lift used in a service station, compressed air exerts a force on a small piston that has a
circular cross section and a radius of 5.00cm. This pressure is transmitted by a liquid to a piston
that has a radius of 15.0cm. What force must the compressed air exert to lift a car weighing
13,300N? What air pressure produces this force?

Solution
Using the Pascal’s principle,
2
F :in _ 7r(0.05)2
4,7 7(0.15)

The necessary pressure of the compressed air is

(1.33x10%) =1.48x10° N

3
I =£=w =1.88x10°N /m’
4, 7(0.05)
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Example (3.6)
What fraction of the total volume of an iceberg is exposed?

The density of ice is p,, =0.92g/cm’ and that of sea water is p,,, =1.03g/cm’.

Solution
Weight of ice is W,
p WaterVWaterg = p ice I/iceg = p WaterVWater = p ice Vice
VWater _ pice _ 092

= p..Vie& the buoyant force of water 1S B = py eV ivuier €

=0.89

Vice pWater - 103

The volume of ice exposed in air is 100%-89% = 11%




3.7 Fluid Dynamics

Fluids in Motion

Matter
o N
Solid Liquid Gas
G _J
~—
Fluids

3.7.1 General Concepts of Fluids Flow

Fluid dynamics is the study of fluids in motion .Fluid flow can be steady

(laminar) or non-steady . When the fluid velocity v at any given point is constant in

time , the fluid motion is said to be steady . In non-steady flow , the velocities v are
function of the time .

Fluid flow can be rotational or irrotational . If the element of fluid at each
point has no net angular velocity about that point , the fluid flow is
irrotational

Fluid flow can be compressible or incompressible . Liquids can usually be
considered as flowing incompressibly. But even a highly compressible gas
may sometimes undergo unimportant changes in density . Its flow is then
practically incompressible .

Finally fluid flow can be viscous or nonviscous . Velocity in fluid motion is
the analog of friction in the motion of solids . Viscosity introduces tangential
forces between layers of fluid in relative motion and results in dissipation of
mechanical energy .

We shall confine our discussion of fluid dynamics for the Ideal fluid flow,
therefore the following four concepts are considered :

1.

2.

3.

4,

The fluid is steady. In steady ( laminar ) flow , the velocity of the fluid at
each point remains constant .

The fluid is nonviscous . In this case , internal friction is neglected . An
object moving through the fluid experiences no viscous force .

The fluid is incompressible . The density of an incompressible fluid is
constant .

The flow is irrotational . In irrotational flow, the fluid has no angular
momentum about any point.

3.7.2 Streamlines

The path taken by a fluid particle under a steady flow is called a streamline .

The velocity of the particle is always tangent to the streamline , as in Fig (3.12) .
Consider the point p within the fluid , since v at P does not change in time , every
particle arriving at P will pass on with the same speed in the same direction . The
same is true about the point Q and R . The curve in Figure (3.12) is called streamline
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Figure (3.12)

In steady flow, streamlines cannot intersect ( otherwise a particle reaching the
intersection could follow either of two paths and the flow would not be steady).
Therefore, in steady flow, streamlines illustrate a fixed pattern of the flow. In
principle we can draw a streamline through every point in the fluid . Let us assume
steady flow and select a finite number of streamlines to form a bundle , this tubular
region is called a stream tube or a tube of flow . Thus a stream tube is a region in a
fluid bounded by streamlines, as seen in Figure (3.12). In steady flow, a particle
within stream tube cannot pass outside the tube ( because its streamline would then
have to intersect a streamline bounding the stream tube).

In summery

- The Solid has a fixed shape, which it tends to retain.
- But, Fluids have no fixed shape and they take the shape of the container.

3.7.3 Streamline flow

It is the motion of a fluid in which every particle in the fluid follows the same path as the

previous particle.

- We shall assume that the fluids are :
1) Incompressible

2) Have no internal frictions

3.8 The Continuity Equation

AE
A ay \(i-)—/ > >
"u".l m

Figure (3.13)




In Figure (3.13), the velocity of the fluid inside the tube of flow may have

different magnitudes at different points ( although it parallel to the tube at any point)
Let the speed be v for fluid particles at (1) and v for fluid particles at (2) . Let A;
and A» be that cross- sectional areas of the tube perpendicular to the streamlines at
the points (1) and (2), respectively. In the time interval At a fluid element travels
approximately the distance vAt .
Then the mass of fluid Am; crossing A in the time interval Atis :

Am, = pAV.At
The mass of fluid Ama crossing A; in the same time interval At s :

Am, = p,AV,At
where pi and p> are the fluid densities at (1) and (2) , respectively . Because the

fluid is incompressible p, = p, = p and because the flow is steady ,then, Ami=Am>

Then
AV, = AV, = constant (3.6)
Or
AV = constant

This expression is called the equation of continuity for fluids .
It states that :
The product of the area and the speed at all points along a pipe is constant for an
incompressible fluid .

Equation (3.6) shows that the speed is high where the tube is constricted ( small A ) and
low where the tube is wide ( large A) . The product Av gives the volume flux or flow rate and it
has the dimensions of volume per unit time

The condition AV = constant is equivalent to the statement that the

volume of fluid that enters one end of a tube in a given time interval equals the
volume leaving the other end of the tube in the same time interval if no leaks are
present .

OR

It is the volume of fluid passes a certain cross section per unit time.

Volume Flow Rate — Volume _ Area * Distance _ Area * Velocity* Time

Time Time Time




(PHYS 1010)

Axvxt
Q= X

Q =Ayv,=Ay, (Continuity Equation)

= R =Av
The amount of fluid that enter from the first slot (1) is equal to the amount of fluid that comes
out of the other slot (2) during the same time.

* As the section is narrow the liquid flows faster.

Z Checkpoint 3

The figure shows a pipe and T | >

gives the volume flow rate
(in cm¥s) and the directionof

flow for all but one section. C
What are the volume flow 4 ﬂ

rate and the direction of flow
for that section?

Figure (3.14)
Answer: 13, out




3.9 Bernoulli’s Equation “The relation between P, p, v and h (height) and their ability to

describe fluids in motion”

When a fluid moves through a region where its speed and /or elevation above

the Earth’s surface changes, the pressure in the fluid varies with these changes.
Bernoulli’s equation is a general expression that relates the pressure difference
between two points in a flow tube to both velocity changes and elevation changes.
Consider the flow of a segment of a nonviscous, steady, incompressible flow of a
fluid through a nonuniform pipeline or tube of flow shown in Figure (3.15).
At the beginning of the time interval At , the segment of fluid consists of the gray
portion ( portion 1) at the left and the uncolored portion at the upper right. During
the time interval At, the left end of the segment moves to the right by a distance si.
At the same time, the right end of the segment moves to the right through a distance
sz, so that the volume element ,

Arsi=Ar s
fes
A Loy
[ —
r’; iy
F G Vo
S1
h2
PA I/
by —
¢

Figure (3.15)

The work done on the system by the resultant force is determined as follows :
1- The work done at point 1 to push the entering fluid (input) into the tube is the
work done on the system by the pressure force Fiis given by
W, = PA4s, (3.7)

2- The work done at point 2 to push forward the fluid out the tube (output) is the
work done by the system by the pressure force F, is given by

W,=—Pds,  (38)
- Net Work = W - W

- Net Work = Fs —Fs = PAs — PAs
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- Since, —  the Volume = As = As, = 4,s,
- So, - Work = (R-B)V
- Change in kinetic energy AE,=/AmvV; -%mv; = %m (Vi -v;)

- Change in potential energy AE, = mgh,—mgh=mg (h,— h)

- The work done on the system = the increase in kinetic and potential energy.

_ (Pl—Pz)Vzl/zl’n(V§—V12)+mg(h2_hl)

- Since, the volume V = —

- (B=R)=% o (vi-vi)+ Tg (h—h)

- P +%pvi+pgh =P, +%pvs+pgh,
Where:
P, : PressureEnergy
Y2 p v: : Kinetic Energy per unit volume
p gh, : Potential Energy per unit volume
Energy per volume before= Energy per volume after

- So, P+ %pv +pgh = Constant (3.9) = Bernoulli's Equation

- Where, P : is the absolute pressure p : 1s the density of the fluid

- Absolute Pressure (P) = Gauge Pressure (Pg) + Atmospheric Pressure (Pa)

3.9.1 Applications
3.9.1 .1:When the liquid is stationary; (Both v and v are equal zero).

From Bernoulli: P +%pvi+pgh =P, +%pv;+pgh,
P +pgh, =P +pgh,

SO’ (P2_Pl):pg(hl_h2)
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3.9.1 .2: Torricelli's equation :

When there is no change in pressure (P1 = P,=Py)
- A liquid emerges from a hole (orifice), near the bottom of an

3.9.1 .2.1 open tank. see the Figure (3.16)
- The speed (v2) at the top is equal zero.

- The pressure at both top and at the orifice is equal to the atmospheric pressure.

- Ay
- Pi=P,=P=P , v2=0 @ kK ‘J:/
4 T
- From Bernoulli: P +%pvi+pgh =P, +%pv,+pgh, il 4
1
- Ypvi+pgh =pgh 4_(1):3&'
- | v
1 1 2 -__JTUFI
- So,
Y

v =2g(h-h,)=2gh =

Figure (3.16
v,={2gh (3.10) gure (3.16)

- Where,
A : 1s the cross section area of the orifice

h : 1s the water level above the orifice
The rate of flow from the orifice R=Av=A2gh

Example (3.7)

An Open tank containing a liquid has a hole in its side. The hole is located ath = 11.48 m
below the water level and open to the atmosphere P, = B =P, =1.013x10’ pa . We can make the

following approximation: 7, =0.
Calculate the speed 7, of the water leaking from the hole

Solution

v,=y2gh=2x9.8x11.48=15m/s

@
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3.9.1 .2.2 tank is closed ,See the Figure (3.17)

va=0,P1=Po , h=hy-h
From Bernoulli’s equation:
P +%pvi+pgh =P, +%pv;+pgh,

V1=\/M+2gh (3.11)
p

Example ( 3.8)

P

h2
F

T'
eri_é?

h1

'

Figure (3.17)

A closed tank containing a liquid with a density p =980kg/m’ has a hole in its side . The hole is

located at h = 15.65 m below the water level and open to the atmosphere P, = P, =1.013x10’ pa.

We can make the following approximations: P, =0 and 7, =0 .

Calculate the speed 7] of the water leaking from the hole

Solution

Y

980

_ 2R on - JM

+2x9.8x15.65=10m/s
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3.9.1.3 The Venturi effect ,See the Figure (3.18)

—l- —

-
PAz

_L'U

—-

E vy hy

Figure (3.18)
- That describes the motion of fluid through constriction.

- h=h
- From Bernoulli: P +%pvi+pgh, =P, +%pvi+pgh,

P +%pvi = P, +%pv;

- From Continuity equation:  Arvi=Axv2 , V,=—=V,
v,=A, [ 20R) (3.12)
P (AT -A3)
Mﬂheckpoint 4

Water flows smoothly through the pipe shown in the figure, descending in the process.
Rank the four numbered sections of pipe according to (a) the volume flow rate Ry
through them, (b) the flow speed v through them, and (c) the water pressure p within
them, greatest first.

Figure (3.19)
Answer: (a) all the same volume flow rate
(b)) 1,2&3,4
© 4,3,2,1
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Example (3.9)

A pipe, see the Figure (3.20), has a diameter of 16 cm at point 1(P; = 200 KPa) and 10 cm at
point 2 that is 6 m higher than portion 1. When oil of density 800 kg/ m* flows in this pipe at a
rate of 0.03 m? /s. Find the pressure at point 2?

Figure (3.20)

Solution

A1vi=A2v2=0.03 ,then

vi=0.03/7(0.08=1.49m/s , v2=0.03/7(0.05)*=3.82 m/s

From Bernoulli’s Equation
Pi+Ypvil+pghi=Pi+%pv?+pgh

P,=Pi+%p(vi?=v2?) + pg(hi —hy)
=2 x 105+ % 800 {(1.49)2 — (3.82)%} + 800 x9.8 X6
=1.48 x10° Pa.

Example (3.10)
A Venturi meter reads height h; = 30 cm, and h> = 10 cm. Find the velocity of flow in the pipe.
A1=7.85X10° m? and A2 =1.26 x 10~ m?.

Solution

vi=As[2gh/ A2- Azz]l/2
=1.26x107 [2x 20 x 102 x 9.8 / (7.85x1073)% — (1.26x10-%)?]'2
=0.322m/s

Example (3.11)

A horizontal pipe has a constriction in it, as shown in the figure (3.21), At point 1 the
diameter 1s 6cm, While at point 2 it is only 2 cm. At point 1, vi=2 m/s and
p1=180KPa.calculte v; and p; if the density of water is 1000 kg/m?

og
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Figure (3.21)

From Bernoulli Equation:

1 1
P, +5pv12 + pgy, = P, +p§v22 o2y, = VYV, = V5

P +% pv: =P, +% ov: 3 R=A xv, = A4, xv,(Continuity Equation)

6 —2N\2

z(_x1077)
V2:A1><v1: % x4=18m/s

4, (5 x107)’

180x10° +%><100(4)2 =P, +%><100(18)2 =

P, =20000pa
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3.10 Viscosity:

In the previous sections of this chapter our discussion has been limited by
assuming ideal fluids in which there is no internal friction . In real fluids there exist
internal friction between adjacent moving layers of the fluid . Viscosity may be
thought of as the internal friction of a fluid . Because of viscosity , a force must be
exerted to cause one layer of a fluid to slide past another , or to cause one surface to
slide past another if there is a layer of fluid between the surfaces . Both liquids and
gases exhibit viscosity , although liquids are much more viscous than gases .

Viscosity can be defined as the resistance to flow a liquid . The flow process
is one which involves molecules sliding past each other under the influence of some
applied stress. The rate of flow will depend upon :

e the magnitude of the stress,

o the shape of the molecules, and

e the magnitude of the forces of intermolecular attraction
Thus, molecules approximately spherical in shape will more readily slide each other
than, for example, long chain polymer molecules. Also molecules among which
attractive forces are weak will flow more easily than molecules strongly bound to
each other.

When a liquid moves with a steady speed over a solid the motion is quite
slow then it is observed that the layer of the liquid in contact with the solid is more
or less stationary. In other words the velocity of the liquid along the surface of the
solid is zero and the velocity of any other layer of the liquid will be proportional to
its distance from the stationary layer and it will be maximum for the most distant
layer, i.e. the top most layers. If a specific layer of a liquid is taken, then it is
observed that a layer above it is moving faster and a layer immediately below is
moving slower.

3.10.1Coefficient of Viscosity:

Consider a layer AB of a liquid moving with a velocity v with respect to a parallel layer
CD which is at a distance r from it see Figure (3.22).




.............................. 9

Consider that the force required to produce the motion F acting on an area A and this
force is acting along the direction AB, i.e. along the direction of motion . An equal

force will, therefore, act on it in the backward direction due to viscosity .

A B
JF Moving plate
————————————— P m— = 1 | —
""""""" Po-mmmmmm e e
"""""""" o =
| | L Hum.

i Stationary plate

F¢ D

Figure (3.22)

The backward force F will depend on the following factors :
1-  The relative velocity V , it is found that the magnitude of the force F is
directly proportional to V and acts in the direction

opposite to the direction of motion , i.e.

Fo-V
2- The area on which F acts . It is found that the magnitude of F is directly
proportional to A | i.e.

F o A

3- The distance r . It is found that the magnitude of F is inversely proportional to r ,
L.e.

Follr
Then, it follows that
Fo -AV/r
Or
F=-ndVir (3.13)

Where the constant of proportionality 1) is called the coefficient of viscosity and it
depends on the nature of the fluid . The negative sign must be introduced because v
decreases as r increases . If the two layers AB and CD are very close to each
other, the relation: F = —-nAV/r canbe written as :

F=-p4dvV/idr (3.14)

Where dv/dr is called the velocity gradient r rate of change of velocity with distance.

F=n (in magnitude )

If A=1cm? and dv/dr =1, then:
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So the coefficient of viscosity is defined as the tangential force per unit area required
to maintain a unit velocity gradient , i.e. a unit velocity between two layers which
are a unit distance apart .
From equation ( 3.14 ) the coefficient of viscosity n can be written as

n= — FV/Ar

- _&,F
n= (A)/(r) (3.15)

The quantity F/A is the shear stress exerted on the fluid and the quantity (v/r) is the
rate of change of shear strain , therefore,

N = - shear stress / rate of change of shear strain

The SI unit of the of the coefficient of viscosity 1 is Nsm , this unit is called
Pascal second (Pa.sec) or Poiseuilles (PI) . In cgs system the unit of n is
(dyne second cm) and it is the commonly used unit , and is called poise , where :
1 poise = 1 dyne sec cm™
=10"' N sec m?
Or 1 Poiseuilles=10 poise
3.10.2 Poiseuille’s Formula:

Consider a viscous liquid that flow in a cylindrical tube of length 1 and radius R such
that:

* The flow of liquid is parallel to the axis of the tube.

» The flow is steady, i.e. no acceleration of the flow exist.

» The velocity of the liquid layer in contact with the walls is zero and increases
regularly and continuously towards the inner side, it being maximum along
the axis of the tube.

This flow of a viscous liquid is called the laminar, in which the velocity is greatest
at the center of the tube and decreases to zero at the walls .

3.10.3 Stoke’s Formula for The Velocity of A Small Sphere Falling

Through A Viscous Liquid :
When a steel ball is dropped into a viscous liquid in a tall jar see Figure (3.23), it

begins to move down with acceleration under gravitational pull . The motion of the
ball in the liquid is opposed by viscous forces . These viscous forces increase as the
velocity of the ball increases . Finally a velocity will be attained when the apparent

weight of the ball becomes equal to the retarding viscous forces acting on it . At this




Buoyant force

direction of

motion viscous force

weight

Figure (3.23)

stage , the resultant force on the ball is zero . Therefore the ball continues to move
down with the same velocity thereafter . This uniform velocity is called terminal
velocity .

For a small sphere falling through a viscous fluid , the opposing force is
depends on :

- The terminal velocity v of the ball

- The radius r of the sphere

- The coefficient of viscosity 1
Combining all these factors , we have

Focl? 77b e

Or F=KVn"r
Where K is dimensionless constant . Stoke found experimentally that :

F=6xVrn (3.6)

As shown in Figure (3.22), if p is the density of the ball and p'is the density of
the liquid , then :
= The downward force due to gravity (weight of the ball) ,

4
wo=|— .
ST
» The upward force (buoyant force) on the ball,
Fy = weight of the displaced liquid = (4? ﬂ) P g

= The viscous force, F = 6 7t Vrn
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When the ball attains its terminal velocity, the resultant force on the ball is
zero, therefore:

W =F+F
4 3 4 3 7 4 3 ’
?72' rpg= ?72' rpg+6zVrn O 6xVrn= gﬂ' r(p—p)g
2\r? ,
Then V = o —(p—p)g (3.17)
n

3.11 Surface Tension
Surface tension is the energy required to increase the surface area of a liquid by a unit amount.

. | § -3

% For example , the surface tension of water at 20°C is 7.29 x 10~ J/m?,
which means that an energy of 7.29 x 10~ ] must be supplied to

increase the surface area of a given amount of water by 1 m?. i
Water has a high surface tension because of its strong hydrogen bonds.
. . . 1 b Convex
The surface tension of mercury is even higher (4.6 x 10 J/m?) netisas Yo
because of even stronger metallic bonds between the atoms ‘ i 1
. Ho B Hg
of mercury see Figure (3.24)

Adhesion Cohesion

Figure (3.24)
% The surface tension is defined as the ratio of the magnitude of the surface tension force
to the length along which the force acts:

y =i Nim (SLunit) — (3.18)

3.11.1Measurement of Surface Tension:
Capillary rise method:

o ifa capillary tube is immersed in a liquid such as water contained in beaker, the liquid
immediately rises up the tube to a certain height, this rise of liquid in the tube occurs
because the force of adhesion (forces between like molecules) between water molecule
and the capillary wall is greater than the force of cohesion (forces between unlike
molecules) between water molecules.

o The shape of the surface depends upon the relative size of the cohesive and adhesive
forces:

1. if adhesion > cohesion, the liquid clings to the walls of the container and the meniscus is
hemispherically concave see Figure (3.25).

’

¢//
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4

Glass

Figure (3.25)




2. if cohesion > adhesion, the forces cause decrease of the liquid level in the capillary
below that in the chamber and the meniscus is hemispherically convex.

3. By measuring the rise in capillary, we have two forces opposing each other, the up word
force (F1) due to the surface tension and the counteracting force (F2) due to the weight
of the column of liquid in the tube see Figure (3.26).

F F

1

/
F, =2nrycosf (3.19) l .

Figure (3.26)

Where 0: is the angle between surface of liquid and capillary wall, r: is the inside radius
of the capillary tube, y: is the liquid surface tension.

e When the liquid such as water wets the surface of the capillary tube, the 0 is taken as unity,

then F =2zry (3.20)

e the counteracting force F, =zr’pgh= pressure at point x area (3.21)
Where h : is the height of liquid column in the capillary tube up to the lowest point of
the meniscus, p: is the density of liquid, g: is the acceleration of gravity.

e At equilibrium the up word force (F) is equal to the down word force (F2), the liquid does
not move in the capillary:

Fi =F> 1ie. (3.20)=(3.21)

7r’ pgh

2ery =naripgh =y=
2rr

}/=;rpgh (N/m) (3.22)

Example (3.11)

Given that the surface tension of ethanol is (0.032 J/m?). calculate the capillary rise in a glass
tube that is (0.1mm) in radius. Assumed that, the density of ethanol is (0.71 g/cm?).

Solution
. 1
surface tension is y = " pgh N/m =>

2y 2#0.032

h="" = —=0.91m
rpg 710%9.8%0.1x 10
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3.12. Problems
Choose The Correct Answer in Each of The Followings:

1) A fluid of density 9.1 x 10 kg/m? is flowing through a tube at a speed of 5.3 m/s. What is
the kinetic energy density of the fluid?

A) Cannot be calculated without knowing the pressure

B) Cannot be calculated without knowing the elevation

C) 4.8 x 10° J/m’

D) 1.3 x 10* J/m?

2) The equation of continuity for fluid flow can be derived from the conservation of:
A) Energy

B) Mass

C) Angular momentum

D) Volume

3) A change in the pressure applied to a fluid is transmitted undiminished to every point of the
fluid and to the walls of the container.

A) Strain

B) Archimedes' principle

C) Pascal’s law

D) Pressure

4) All fluids are:
A) gases

B) liquids

C) gases or liquids
D) non-metallic

5) Bernoulli's equation can be derived from the conservation of:
A) Energy

B) Mass

C) Angular momentum

D) Volume

6) A long U-tube contains mercury

(Density = 14 x 10° kg/m?). When 10 cm of water (density = 1000 kg/m ¥) is poured into
the left arm, the mercury in the right arm rises above its original level by(in cm):

A) 0.36

B) 0.71

C) 14

D) 35




7) The magnitude of the buoyant force on an object always equals the weight of the fluid
displaced by the object.

A) Strain

B) Archimedes' principle

C) Pascal’s law

D) Pressure

§) Barometers and open-tube manometers are two instruments that are used to measure
pressure.

A) Both measure gauge pressure

B) Both measure absolute pressure

C) Barometers measure gauge pressure and manometers measure absolute pressure

D) Barometers measure absolute pressure and manometers measure gauge pressure

9) The vessels shown below all contain water to the same height. Rank them according to the
pressure exerted by the water on the vessel bottoms, least to greatest.

A) 1,2,3,4 \ [ \
B) 3,4,2, 1 \ / | |
C) 1,2,4,3

D All pressures are the same ! 2 : ¢

10) 100 kg body is standing on a square surface that’s length is 10 cm then the pressure( in Pa)
is:

A) 1.2x107

B) 1.2x 107

C) 9.8 x 10*

D) 9.8 x 10*®

11) A rock, which weighs 1400 N in air, has an apparent weight of 900 N when submerged in
fresh water (998 kg/m?). The volume of the rock(in m?) is:

A) 0.14

B) 0.50

C) 0.90

D) 5.1 x 1072

12) An object hangs from a spring balance. The balance indicates 30N in air and 20N
when the object is submerged in water. What does the balance indicate (in N) when the
object is submersed in a liquid with a density that is half that of water?

A) 20

B) 25

C) 30

D) 35
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13) Assume the height of water in the manometer is at 0 level in both tube sides, then a liquid is
poured inside the left side, if the density of water is 1000 kg/m? ,then the density of this liquid
equals(In kg/m®)

A) 1500 \ g
B) 1000 E
C) 500 : - ]
D) 2500

14) Suppose the atmospheric pressure equals 1x 10° Pa, find the pressure(in Pa) at a height of
1.5 km if the density of air is 1.21 kg m™

A) 12x 107
B) 12x 107
C) 8.2213x 10*
D) 18956.2

15) A wood board floats in fresh water with 60% of its volume under water. The density of the
wood is: (if the density of water is 1 g /cm?)

A) 0.4 g/em?

B) 0.5 g/cm®

C) 0.6 g/cm?

D) less than 0.4 g/cm’

16) A plastic sphere floats in glycerin with 40.0% of its volume submerged, then the
density of the glycerin (in kg/m®) is: (If the density of sphere equals 500 kg/m?)

A) 1500

B) 1000

C) 1250

D) 400
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Chapter (4)

Temperature, Heat, and the First Law of Thermodynamics

Content

Thermal Basics: Temperature - Temperature Scales and Thermometers. Thermal Concept:
Units of thermal energy - Heat capacity and Specific Heat - Newton’s law of cooling - Specific
heat of gases. Heat Transfer: Thermal conduction - Prevost’s theory of heat change - Energy
distribution of Black body radiation - Stefan’s law— Thermal Expansion -Latent Heat.

Learning Objective

1. Identify the lowest temperature as 0 on the Kelvin scale (absolute zero).

2. Explain the zeroth law of thermodynamics.

3. Convert a temperature between any two (linear) temperature scales, including the
Celsius, Fahrenheit, and Kelvin scales.

4. Identify that a change of one degree is the same on the Celsius and Kelvin scales.

5. Know the thermal expansion, quantity of heat and latent Heat.

6. Identify Heat Transfer and Stefan’s law.

4.1 Temperature
The temperature of a body is its degree of hotness (or coldness). Thus, temperature is a
measure of how hot (or cold) a body is, and should not be confused with the amount of heat it
contains. i.e. temperature define as
It is the average energy of the object’s molecules.
*Temperature: It is used to specify how hot or cold an object feels.
**Temperature depends on the transnational molecular motion.

Heat
It is the total energy of the object.
OR, Transfer energy from one body to another due to the difference in
temperature.

Thermal Equilibrium
Two systems are in thermal equilibrium if and only if the are at the same temperature.

Zeroth Law of Thermodynamics C
“When each of two systems is in thermal equilibrium with a third,

the first two systems must be in thermal equilibrium with each other” see
figure (4.1) A B

Figure (4.1)
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Thermometer
It is a device used to measure the temperature of the object.

*Given short notes about the basic physical properties used for making thermometer?

Some of the properties used to measure temperature:

The change in volume of a liquid

The change in length of solid

The change in volume of a gas at constant pressure
The change in pressure of a gas at constant volume
The change in electric resistance of a conductor
The change in color of a very hot body

4.2 Temperature Scales

There are many types of thermometers, but each makes use of a particular thermometric

physical property (i.e. a property whose value changes with temperature T). For example:

mercury in glass thermometer makes use of the change in length (1) of a column of mercury
confined in the capillary tube of uniform bore (1 o T), a platinum resistance thermometer

makes use of the increase in electrical resistance with increasing temperature (R o T),

In order to establish a temperature scale it is necessary to make use of fixed points: a fixed
point is a single temperature at which certain physical property always occurs. Three such
points are defined below.

The ice point (Lower fixed point): Is "the temperature at which pure ice can exist
in equilibrium with pure water at
standard atmospheric pressure".

The Steam point (Upper fixed point): Is "the temperature at which pure water can
exist in equilibrium with pure
water vapor at standard
atmospheric pressure".

AR

Fundamental intervals: is "the interval between the lower and upper
fixed points on the temperature
scale".

Is "unique temperature at which ice, pure

Triple point: water and pure water vapor can

exist together in equilibrium".
The triple point is particularly useful, since there is only one pressure at which all three
phases (solid, liquid and gas) can be in equilibrium with each other.

The SI unit of temperature is the Kelvin (K). An interval of one Kelvin is defined
1/273.15 of the temperature of the triple point of water as measured on thermodynamic scale
of temperature.

¢ Another unit, the degree Celsius (°C), is often used and defined by
I =T -1BI5 4]

Where Tc = temperature in °C, and Tk = temperature in K.
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The temperature scales are:  Celsius, Fahrenheit, and Kelvin see figure (4.2).

2 Boiling water
Kelvin, K Celsius, °C

Fahrenheit a
i Steam

A point

Celsius
scale

}

100 °C

212 °F

Ice
point

One kelvin
o°e # 82°°F equals one
Celsius degree
u J Absolute
7610 0 ~273:15
Ice and water Bulb
Figure (4.2)
Celsius (°C) Fahrenheit (°F) Kelvin (K)

Steam point 100 | Steam point 212 Steam point 373.15

Ice point 0 Ice point 32 Ice point 273.15
5 9
T =— T _32 = —
=g Tr=50c)+32) T. =T, -273.15
T. =T, -273.15

We can deduce the above equations from this equation:
T.-0 T,-32 T,-27315
100 180 100

Example (4.1)

You place a small piece of melting ice in your mouth. Eventually, the water all converts
from ice at T =32 °F to body temperature, T> = 98.6 °F. Express these temperatures as °C and

K, and find AT =T, - T, in both cases?
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T, = ;(TF ~32) = ;(98.6—32) =37°C

T, =T.+27315=37"C+27315=310.15K
AT, =AT, = 37

Example (4.2)
The extremes of temperature in the bottom of the earth, over a period of 50 years, differ
by 116 °F. Express this range in Celsius degree?

AT, = S(ATF) = g(l 16) = 64.44°C

Example (4.3) : Conversions between Temperature Scales
What is 0 K on (a) the Celsius scale and (b) the Fahrenheit scale? (c) What is a room

temperature of 72°F on the Celsius scale?

Solution

(@) v T,=T.+27315 = T.=T,-273.15=0-273.15=-273.15°C

(b) - TF:(%TC)+32 = TF:%(—273.15)+32=—459.67"F

) TF=§TC+32 = Tc=§(TF—32)=§(72—32)=22"C
Example (4.4)

(a) The normal temperature of the human body is 98.6 °F. What is it on the Celsius
scale? On the Kelvin scale?
(b) If the air temperature is -15 °C, what is it in degrees Fahrenheit?
(c) What is a temperature change of 20 °C expressed in Kelvin? In degrees
Fahrenheit?
Solution

(a) - TF:%TC+32 = TC:g(TF—32):3(98.6—32):37”C

And 0 T, =T.+27315 = T, =37+273.15=310.15K

i.e. the temperature of human body is 37 °C or 310.15 K
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(b) - TF=%TC+32 = TF=%(—15)+32=5"F

(c)- T, :§TC +32 = AT, =%(ATC) and v T,=T.+273 = AT, =AT,
Then , the temperature change of 20 °C in Kelvin is also 20 K and

AT, =%(ATC)=§(20)=36"F

Constant Volume Gas Thermometer

- The used property is the change in pressure of a gas at
constant volume as the temperature changes.

- When the gas is heated (or cooled), its pressure
increase (decrease), the volume of the gas in bulb (B) is
kept constant, by raising or lowering the reservoir (R) see
figure (4.3).

- Atlow pressure, The gases behave like ideal gases with

relation,

PV =nRT = (Constant) T

Figure (4.3)
Where: P: pressure , V : Volume , n: number of mole , R: Constant of gas ,T:
temperature en kelvin .
- The triple point of water is the point at which water, ice and vapor coexist in

equilibrium see figure (4.4).

- Kelvin unit: is the fraction of the thermodynamic tgglperature of the triple

. thermometer
point of water. bulb

- Therelationis: T = 273.163

3
Where,

=
B
—veaisod )

Ps : is the pressure at triple point
T :is the gas temperature in Kelvin

@
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Triple point of the water: " is the temperature and pressure at which ice, water and steam

(S,L,G) can all present " and occurs at AT =0.01°Cand P =0.006atm

P=constantxT = F_ , =constantxT, .
P T
Ptriple ILriple
Exercise

T°c T Tk
................................. 273.15
.................. 68 cecssessssssaas

_40 ..............................
................................. 29815

4.3 Thermal Expansion of Solids and Liquids

4.3.1 Expansion of Solids

With few exceptions, substances expand when heated, and very large forces may be set up if
there is an obstruction to the free movement of the expanding or contracting bodies. If
concrete road surfaces were laid down in one continuous piece cracks would appear owing to
expansion and contraction brought about by the difference between summer and winter
temperatures. To avoid this, the surface is laid in small sections, one being separated from the
next by a small gap which is filled in with a compound of pitch. On a hot summer day,

expansion often squeezes this material out of the joints see figure (4.5).

In the older methods of laying railway tracks gaps have to be left between successive
lengths of rail to allow for expansion. Even when such gaps have been left
The rails may sometimes "creep" and close up the gaps. If this happens a rise in temperature

may lead to buckling of the track see Figure (4.5). Free movement at the rail joints is
allowed for by making the bolt holes slotted as shown Figure (4.5).




Fishplate

Rail

© © © 0
]

! ) o
L

S B

Figure (4.5) Railway lines distorted by expansion during hot weather.

In modern practice, however, railway lines are welded together to form king,
continuous lengths. With this method, it is only the last fifty to one hundred meters if any
length which show expansion, usually of a few centimeters. This movement is taken up by
planning the ends of the rails and overlapping them. The remainder of the rails are unable to
expand and so the forces set up develop internal potential energy in the metal. To keep this
internal energy to a minimum, it is best to lay the track at a time when the temperature is
midway between the summer and winter averages. This technique has been made possible
by the use of concrete sleepers and improved methods of fixing the tails so that the track
may withstand the thermal stresses set up in it without buckling.

Allowance also has to be made for the expansion of bridges and the roofs of buildings
made of steel girders. Various methods are used to overcome the difficulty, a common one
being to have one end only of the structure fixed while the other rests on rollers. Free
movement is thus permitted in both directions.

Over a very long period of years, expansion and contraction causes "creeping" of lead
on the sloping roofs of buildings when heated by the sun, the lead expands and tends to move
down the roof under the force of gravity. On cooling and contracting, the force

of contraction is opposed by the force of gravity on the lead and friction between it and the
roof planking. This sets up a strain in the lead and gives it a very slight permanent stretch.
After many years the lead stretches more and more, and eventually it forms into folds and may
even break.

This trouble has been aggravated by the all too common practice in the past of using
lead in very large sheets. When restorations are carried out it is now usual to replace the lead
in much smaller sections.




(PHYS 1010) A A 1 A A A 1

4.3.2. Useful Applications of Thermal Expansion
4.3.2.1. Linear Expansion

- Suppose a rod of material, Figure (4.6), has a length L, at some initial temperature T,

when the temperature changes by AT, the length changes by AL.

The length change AL depends on:

- The original length L,

- The temperature change AT

- The kind of material
i.e., the length change is proportional to L, and AT, so the proportional constant depends on the
kind of the material (naming the coefficient of linear expansion «)

AL = o L AT
So, the length L at a temperature (7 = T, +AT) is:
L = L ,+AL =L +a LAT = L (1 +aAT)

| || I

Lo Figure (4.6) Lo AL

The fractional length change = AL / L, .

Example (4.5)

The concrete sections (a=12x10 'C-!) are designed to have a length of 10.0 m. The sections
are poured and cured at 20 "C. What minimum spacing should the engineer leave between the
sections to eliminate buckling if the concrete is to reach a temperature of 50 "C?

Answer

AL=a LAT =a L, (T, -T;)=12x10" C" x10x(50-20) =3.6x10" m

Example (4.6)
A surveyor uses a steel measuring tape that is exactly 50m long at a temperature of 20 °C. What

is the length at a temperature 35 °C. If the measured distance at that temperature is 35.794m,
what is the actual distance?
where a =1.2x10° K,
Answer
L = L,( +aAT)

50 [1 +18x107] = 50x1.00018 = 50.009 m

L = L,(I +aAT)
35794 = L,[1 +1.2x107° x(35-20)] = L,[1 +18x107] = L,x1.00018
—> L, = 357876 m

L= 5011 +1.2><10_5><(50—35)]




Example (4.7)

A steel measuring tape measure the actual distance at 20 °C. The measured distance is 35.794m
at the temperature 35 °C. what is the actual distance ? (note that o = 1.2x107 /°C)

Answer

L = L,(I +@AT)
L = 35794 [1 + 1.2x107(20 - 35)] =35.794 x 0.99982
L = 357876 m

4.3.2.2. Area Expansion

1. Suppose a rectangular face of a block, Figure (4.7), has a length of L, and width of W,
at some initial temperature To.

2. If the material has a linear expansion coefficient o and the temperature is changed by AT
then: W, AW

o Thenew lengthis L= L (1+aAT)
o The new widthis W = W, (1+a AT)
e The original areais4, = LW, -

[
[
[
Lo I
[
[
|

| The new areais 4 = LW = L (1 +aAT) xW,(1 +aAT)
A=LWA +aAT) = LW,(1 +2a AT+’ AT )~ A (1 +2aAT)
Because a’AT* =0
A~ A1 +AT) where Ad= A BAT, B=2a
*if the temperature of a disk with a hole has changed (increase or decrease) then the dimension
of the disk and the hole is changed (increase or decrease).

Example (4.8)

A brass disk has a hole 80 mm in diameter punched in its center at 70 °F. If the disk is placed in
a boiling water, what will be the new area of the hole?

(a = Ix107°°F™),

Answer

A =mr* = 3.14 x (80/2) =5026.55mm’
f=2xa=2 xI1x107 = 2x10° °F"'

A = A1 +pAT) = 5027 x [I +2x107°x (212 =70)]
A = 5026.55 x 1.00284 = 5040. 72 mm’
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4.3.2.3.Volume Expansion

1. Temperature increases usually cause increases in volume for both solid and liquid
materials See Figure (4.8).

2. The increase in volume AV is proportional to the temperature change and the initial
volume V, . AL:

Loj Vo Lo

AL

Lo

Figure (4.8)
V =L=[LQ1+aAT) = L1 +aAT) = V[l +(aAT)f
V=Vl +3 (@AT) + 3 (@ATY + (@AT) ]~ V[l +3aAT]
Because: 3a’AT* ~0, 3¢’°AT° ~0
VaV (1 +yAT) where AV =V y AT , 7= 3a

Example (4.9)
A solid block of steel has dimensions 200 mm x 50 mm x 40 mm at 20 °C. Its density at 20

°C is 7800 kg/m?.
calculate: (a) the mass in kilogram; (b) the increase in volume, in mm?, if the temperature rises
to 220 °C. (c) the density at 220 °C.
Take o= 11x10%/ °C.
Answer
V=200 x 50 x 40= 4 x 10°mm’ = 4 x 10°x107m’ =4 x107n’

Mass = density x Volume = 7800 x 4 x10™ =3.12 Kg

AV =V yAT = 3aV AT = 3 x 11x10°x4 x 10°x (220-20) = 2640 mm’

Density = mass | Volume = 3.12 / (402640 X 10'9) = 7750 kg /| m’

4.3.3.Expansion Of Liquids
We have already seen that liquids expand, in connection with our study of liquid-in

glass thermometers. The expansion of a liquid may be shown by means of a flask filled with a
rubber bung and a length of glass tubing Figure (4.9). The flask is filled with water or other
liquid and the bung pushed in until the level of the liquid comes a short distance up the lube.
On plunging the flask into a can of hoi water it is noticed that the level of the liquid at first falls
slightly and then starts to rise steadily.

The 1nitial fall in level is caused by the expansion of the glass which becomes heated
and expands before the heat has had time to be conducted through the glass into the liquid.




It is known that different liquids have different thermal expansions. To demonstrate
this, several fairly large glass bulbs with glass stems are filled to a short distance above the
bulb With various liquids Figure (4.9).

In order to make a fair comparison, the bulbs and steins must all be of the same size.
The bulbs are immersed in a metal trough containing cold water and left until they have
reached a steady temperature. A little extra liquid should now be added, where necessary, to
make all levels the same. The bath is now heated and well stirred to ensure a uniform
temperature. When the bulbs and their contents have acquired the new temperature of the bath
it will be seen that the liquid levels have risen by different amounts. Thus, for a given rise in
temperature, equal volumes of different liquids show different expansions in volume

C )| | |C : | rem———

) _-Benzene

Figure (4.9) Comparison of expansion

Example (4.10)

On a hot day in Las Vegas, oil trucker loaded 37000L of diesel fuel. He encountered
cold weather on the way to Payson, Utah, where the temperature was 23K lower than in Las
Vegas, and where he delivered his entire load. How many liters did he deliver?
(Bdiese=9.5x10"* °C"!).and neglect the steel tank expansion.

Solution:
V, diesary = 3700L ; AT = — 23K 5 Viea ="
AV =V yAT = (37000L)(9.5x107°C™")(-23K) = — 808 L

Vo=V +AV = 37000L — 808L = 36190L .

4.3.3.1 Real and Apparent Expansion of A Liquid

Unlike solids, liquids have no fixed length or surface area but always take up the shape
of (lie containing vessel. Therefore, in the case of liquids we are concerned only with volume
changes when they arc healed.

The real (or absolute) expansivity of a liquid is the fraction of its volume by which it
expands per Kelvin rise in temperature.

Any attempt at direct measurement of the expansion of a liquid is complicated by the
fact that the containing vessel itself expands. However, since liquids must always be kept in
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some kind of vessel, it is just as useful to know the apparent expansion of a liquid, which is the
difference between its real expansion and the expansion of the vessel.

The apparent expansivity of a liquid is the fraction of its volume by which the liquid appears to
expand per Kelvin rise in temperature when healed in an expansible vessel.

In this respect we shall not be concerned with methods of measuring these expansivities.

4.3.3.2 The Unusual Expansion of Water

Some substances do not always expand when healed. Over certain temperature ranges
they contract. Water is an outstanding example see figure (4.10).

If we start with some ice at -10 °C and supply it with heat, it expands just like any other
solid until it reaches 0 °C, After this it begins to melt while the temperature remains constant
at 0 °C. This inciting is accompanied by a contraction in volume of about 8 per cent. Between
0 and 4 °C the water contracts still further, reaching its minimum volume at about 4 °C. This
means that water has a maximum density at 4 °C.

Variction of water volume
with temperature

Volume (cm®)

|

|

|

|

|

IR (TR OO AT N O O S
0 4 10 15
Temperature (°C)

Figure (4.10)

Beyond 4 °C the water expands. This behavior is described as anomalous (= irregular).

The changes in the water volume between 0 and 5°C are shown graphically in the
above Figure. Unfortunately, on the scale of this graph, we cannot show the contraction in
volume when ice melts, since this 1s nearly 700 times greater than the contraction "of water
between 0 and 4 °C".

Incidentally, the contraction in volume when ice melts is matched by a corresponding
expansion when water freezes to form ice. This explains why pipes burst during frosty
weather though the damage does not become apparent.

4.3.3.2.1.Frost Heave

One problem brought about by the expansion of water on freezing has occurred in cold
store buildings. This is frost heave, the name given to the damage caused to the buildings
when the water in the subsoil beneath the site freezes and expands, causing upward bulging of
the floor and damage to foundations and walls. This reached serious proportions about the
mid-fillies as storage conditions went lower in temperature.




4.3.3.2.2.Density Changes in Water

The density changes which occur when a piece of ice at -10 °C is gradually heated up
to 100°C are shown in Figure(4.11). The maximum density region on this graph should be
compared with the corresponding volume changes shown in Fig. 3.8.

Note how much greater is the density change when ice melts to form water at 0 °C
compared with the density change of water between 0 °C and 4 °C.

4.3.3.2.3.Biological Importance of The Anomalous Expansion of Water,

The peculiar expansion of water has an important bearing on the preservation of aquatic
life during very cold weather Figure (4.11). As the temperature of a pond or lake falls, the
water contracts, becomes denser and sinks. A circulation is thus set up until all the water
reaches its maximum density at 4 °C. If further cooling occurs any water below 4 °C will slay
at the (op owing to its lighter density. In due course, ice forms on (the top of (lie water, and
after this (he lower layers of water at 4 °C can lose heal only by conduction. Only very shallow

water is (hits liable to freeze solid. In deeper water there will always be water beneath (he ice in
which fish and other creatures can live.
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Thermal expansion of water
Figure (4.11)

M Checkpoint 2

The figure here shows four rectangular metal plates, with sidesof L, 2L, or
3L.They are all made of the same material, and their temperature is to be
increased by the same amount. Rank the plates according to the expected
(1 (2) (3

increase in (a) their vertical heights and (b) their areas, greatest first.

Figure (4.12)

Answer: (a) — 2 and 3 (same increase in height), then 1, and then 4
(b) — 3, then 2, then 1 and 4 (identical increase in area)
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4.4. Quantity of Heat

e The quantity of heat is the thermal energy required to raise the temperature of a given mass.
e Thermal energy is the energy associated with random molecular motion.

e We can measure changes in thermal energy by relating it to change in temperature.

e Thermal energy lost or gained by objects is called heat.

e Internal energy (U)is the energy associated with the microscopic components of a system
(i.e. the atoms and molecules).

4.4.1. Units of Quantity of heat:
4.4.1.1. Calorie (Cal):

Is the quantity of heat required to change the temperature of 1gram of water through 1°C?

4.4.1.2. British Thermal Unit (Btu) :

Is the quantity of heat required to change the temperature of 1pound of water through 1°F.
Btu =252 cal = 0.252 Kcal

4.4.1.3. Horsepower (hp)

It is the amount of power required to lift 33000 pound 1 ft in 1 minute, or 550 foot-pound per
second.

1 Btu=252Cal , lhp=746 W ,
1 Cal=4.186J , 1 food calorie = 10° calorie

4.4.2.The Heat Capacity (of A Body):

[s the quantity of heat required to raise the temperature of the body one degree?

. 0
Heat C S= =
eat Capacity AT
Its units: Cal/°C , Kcal/°C , J/K ,Btu/ °F

4.4.3.The Specific Heat Capacity

Is the quantity of heat required to raise the temperature of a unit mass of the material one
degree?

c - 9 or O=mCAT

units: Cal/g°C , Kcal/Kg.C , JKg. K , Btu/Ibn°F




4.4.4. Heat and Mechanical energy (Joule Experiment):

Joule carried an experiment shown in the figure (4.13) to give the _

relation between thermal energy units and mechanical energy units as’ .

shown: .

e As the two blocks of mass m fall through (=P i :

a distance h, the loss in the potential energy | = l:_ =
(Which equal the work done by paddles) is ! |1 ‘
given by : -~ I =

W0
W = JxQ
Figure (4.13)
J 1s the mechanical heat equivalent defined as the work done to produce a quantity of heat

equal to 1 cal.

J=4.186 Joule /cal

From this we can conclude that
1 Btu =778 ft.Ib
1 cal=4.1861
1 Kcal=4186]
1 Btu=252Cal , 11b,=454g , 1Cal=4.1861]

4.4.5.The Specific Heat (of A Material)(c)

It is the quantity of heat per unit mass required to raise the temperature by one degree Celsius
(Kelvin). (a constant for each substance)

0

c=—— 0 0
m AT Cal/g°Cor  Btu/Ib.°F or J/kg. K

Q=mcAT
*The heat lost by the warm bodies must equal the heat gained by the cool bodies.

Example (4.11)

80 kg man ran a fever of 2 °C above normal; whose temperature was 39 °C instead of the
normal 37 °C. Assuming that the human body is mostly water, how much heat is required to
raise his temperature by amount? c¢,=4190 J / kg. K

Solution

AT =39-37=2"C=2K

O=mc AT =(80Kg)(4190J / Kg.K )(2K ) = 6.7x10°J =160Kcal
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4.5. Heat Exchange

The term heat has now been introduced as the thermal energy absorbed or released during a
temperature change. The principle of thermal equilibrium tells us that whenever object are
place together in an insulated enclosure, they will eventually reach the same temperature. This
is the result of a transfer of thermal energy from the warmer bodies to the cooler bodies. 1f
energy is to be conserved, we say that heat lost by worm bodies must equal the heat gained by
the cool bodies, That is heat lost = heat gained

Total Heat Lost = Total Heat Gained

4.5.1. Application Mixing Experimental

If hot body dropped into color container (Calorimeter ), at the equilibrium temperature of the
mixed system
Total Heat Lost(/hot body) = Total Heat Gained(cold body)

thhAT/; = mCCCAT; = mhch (]—;1 - T;q) = mccc (]—;q - ]—;)

Example (4.12)
A 0.05 Kg unknown (ingot) of metal is heated to 200 °C and then dropped into a beaker

containing 0.4 Kg of water initially at 20 °C. If the final equilibrium temperature of the mixed
system is 22.4 °C. if the cw=4190 J/kg.°C

a) Find the specific heat of the metal.

b) What is the total heat transferred to the water.

Answer
The mass of the metal (ms) = 0.05 kg, & T =200 °C,
The mass of water (mw) =0.4 kg,& Tw=20°C, T¢=22.4°C
a) Find the specific heat of the metal.

Heat lost = Heat gained
0.05 x ¢,x (200 — 22.4) = 0.4 x 4190 x (22.4 — 20)
c,= 453 J/kg'C

b) What is the total heat transferred to the water.
The total transferred heat = m, ¢, AT, =0.4 x 4190 x 2.4 =4022.4J




Example (4-13)
A handful of copper shot is heated to 90 °C and then dropped into 80g of water at 10°C. The
final temperature of the mixture is 18 °C. What was the mass of the shot?

Answer
Copper shot temperature (Ts) =90 °C, water temperature (Tw) =10 °C,
Equilibrium temperature (Te) = 18 °C, my =80 g, ms =?
Heat lost by shot = heat gained by water
m, c, AT. =m, c, AT,
m,(0.093) (190 —18) = (80) (1) (18 —10)
m =95.6g
4.6. Change of Phase

A substance often undergoes a change in temperature when energy transferred between
it and its surroundings. There are situations, however, in which the transfer of energy does not
result in a change in temperature. This is the case whenever the physical characteristics of the
substance change from one form to another; such a change is commonly referred to as a phase
change. Two common phase changes are from to solid (melting) and from liquid to gas
(boiling); another is a change in the crystalline structure of a solid. All such phase changes
involve a change in internal energy but no change in temperature. The increase in internal
energy in boiling, for example, is represented by breaking of bonds between molecules in the
liquid state; this bond breaking allows the molecules to move farther apart in the gaseous state,
with a corresponding increase in intermolecular potential energy.

N
72 —> . _
o < Solid z =
5 & 2 2 £
[¢) = Iz =
¢ o o =2 ®
N 5 0@
= s £
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_’ —
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As you might expect, different substances respond differently to the addition or removal
of energy as they change phase because their internal molecular arrangements vary. Also, the
amount of energy transferred during a phase change depends on the amount of substance
involved. (It takes less energy to melt an ice cube than it does to thaw a frozen lake). If a
quantity Q of energy transfer is required to change the phase of a mass m of a substance, the
ratio L = Q/m characterizes an important thermal properties of a substance. Because this added
or removed energy does not result in temperature change, the quantity L is called the latent
heat (literally, the "hidden" heat) of the substance. The value of L for a substance depends on
the nature of the phase change, as well as on the properties of the substance.

Latent heat defined as the amount of heat per unit mass needed to transform material
completely from one phase to another phase without change in temperature (i.e. at constant
temperature).

4.6.1. Latent Heat of Fusion Lf

Defined as the amount of heat per unit mass needed to transform material completely from
solid phase to liquid phase without change in temperature (i.e. at constant temperature called
the melting temperature).

Lf == or  Q=m Lf

4.6.2. Latent Heat of Vaporization Lv

Defined as the amount of heat per unit mass needed to transform material completely from
liquid phase to gas phase without change in temperature (i.e. at const temperature called the
boiling temperature).

L, == or Q=mlL,

To understand the role of latent heat in phase change, consider the energy required to
convert a 1.00 gram block of ice at -30 °C to steam at 130 °C. As shown in figure (4.14) the
experimental results obtained when energy gradually added to ice. Let us examine each portion
of the curves indicated by letters (A, B, C, D and E)
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140 4

120 - D E
1 Liquid + gas 9as
100 4
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1Solid + Liquid
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Energy added ( J)

Figure (4.14) A plot of temperature versus energy added for a cube of ice at -30°C

Part A:

On this portion the temperature of ice (Solid phase) raised from -30 °Cto 0 °C
without change in state i.e. ice remains solid and because the specific heat of ice 2090 J/kg. °C
we can calculate the heat added from the relation

O =mcAT = 1x107x2090x (0 — (-30)) = 62.7J

Part B:

When the temperature of ice reach 0 °C, the ice start to melt and a mixture of ice-
water is present at constant temperature called melting point until added energy can melt all
ice.

A quantity of heat OQ=m L, =1x107x3.33x10° = 333 J.

Part C:

On this portion the temperature of melted ice (water in liquid phase) raised from 0°C to
100°C without change in state, specific heat of water 4190 J/kg.°C. The quantity of energy
added

0 =mcAT = 1x107 x4190x (100 — 0) = 419.0 J
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Part D:

When the temperature of water reaches 100 °C, the water starts to boil and a mixture of
water-vapor is present at constant temperature called boiling point until added energy can
vaporize all water.

A quantity of heat Q=m L, =1x107x2.26x10 °= 2260

Part E:
On this portion the temperature of vapor (gas phase) raised from 100°C to 120°C
without change in state, specific heat of water 2010 J/kg.°C. The quantity of energy added
O =m cAT =1x107x2010x (120 —100) = 40.2.7
The total amount of heat needed for this process can be calculated from all this process

such as
Qt: Q1+Q2+ Q3+ Q4+ Qs
0= 627 + 333.0 + 419.0 + 2260.0 + 40.2 = 31109J

We can describe See figure (4.15) phase change

e "
Priiich S5
\i"—ﬁ Gl

Solid Liquid Gas

Figure (4.15) Simple model illustrates the change of phases.

Example 4.14
What mass of steam initially at 130 °C needed to worm 200g of water in a 100 g glass

container from 20°C to 50°C. (Specific heat of steam = 2010 J/kg.K, Specific heat of water =
4190 J/kg K, Ly =2.26 x 10° J/kg, specific heat of glass = 837 J/kg.K)
Solution

Steam losses energy in three stages;

1) Steam cools to 100 Q, =m, ¢, AT, =m, x2010x(130-100) = 6.03x10*m

Steam at 100 condensed and converted into water at 100 °C

oy
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Q,=m L, =m x2,26x10°
1) Temperature of water created from steam cools to 50 °C
Q, =my, ¢, AT, = m x4190x (100—50) = 2.09x 10’ m,
2) Adding these three stages gives us the heat lost from steam
0, =0, +0, +0, =6.03x10"m, +m, x2,26x10° +2.09x10°m, =2.53x10°m,

3) The temperature increases in both Liquid and glasses, so the heat gained 0=0, +0,
0=m, ¢, AT, +m,c, AT, =0.200x 4190x (50—20) +0.100x 837x (50—20) = 2.77x10*

Heat gained = heat lost
2.53x10°m, =2.77x10*J = m, =1.09x10"Kg

Example 4.15
Liquid helium has a very low boiling point 4.2 K, and very low latent heat of

vaporization. 2.09 x 10* J/kg. If energy is transferred to a container of boiling liquid helium
from an immersed electric heater at a rate of 10 W (J/s), how long does it take to boil away 1.0
kg of the liquid. ( Ly = 2.09 x 10* J/kg).

Solution

The quantity of heat needed to boil unit mass of He
Q0,=m L, =1x2.09x10* =2.09x10*J

The rate of energy supply

0_ 2.09x10*

4
1o _2:09x10

=1=2.09x10’ sec=34.83min

t t s t
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4.7. Heat Transfer

Heat may be transferred from one point to another by conduction, convection or
radiation see figure (4.16)

Conduction Convection Radiation

"~ Radiation

Figure (4.16)

4.7.1. Conduction

It requires physical contact between the bodies and it is also requires a physical medium.
* A good conductor of electricity is also a good conductor of heat.

The Wiedemann-Franz law expresses the observation dial the ratio k/c is nearly the
same for all metals. This is a reflection of thermal conduction in metals being largely due to die
movement of the same free electrons as those which are responsible for electrical conduction in
metals.

4.7.1.1.Rate of Heat Transfer (R)

It is the quantity of heat (Q) that flows perpendicular to the face during a time (t)

Thot Tcold
Q
R = % or R = (il_(t) J/s  or W &
*The quantity of heat transferred by unit time (R) is: Energy flow | _ N
- Directly proportional to the area A. " lh); - .
- Directly proportional to temperature difference AT = 7, - T, Ax

Inversely proportional to thickness Ax ,See figure (4.17) figure (4.17)
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ROLAAT = R:kAA_T - R:kATh-TC
AX AX AX
Where:

e The thermal conductivity (k)

It is the measure of its ability of the substance to conduct heat.
OR, The rate at which the heat flows through a certain area of a body.

e |dT /dx] is called the temperature gradient of the material
e Forarodoflength L, the temperature gradient can be expressed as:

dr| T, - T,
dx L
% Rate of Heat Transfer (R) for rod of length L is:
R =ka T
L

N.B

When two slabs of different thermal conductivity and similar cross sections are connected (in
contact) see figure (4.18), the rate at which heat is conducted through each material must be
constant.

Analogy between heat conduction and electrical systems

R=ka2 o groalcl o oL
L r k

Figure (4.18)

It Ty ) A
_>_/\/\’l\,_ K Tc

—
L

Heat System

Figure (4.19)
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4.7.1.1.2.For several slabs
(a) Series , See figure (4.20)
R Ry R; Ki| K» Kz
—ANAANAAN— T
Tn Ti T Tc Tyle—Tie—Tse T o
Figure (4.20) - - -
oA AToverall _,  Tu-Tc Where R Y
> Rth Ri+R:+Rs k
*Total resistance for seriesconnection: Rr=Ri+R: + R; +.......... + R
Example (4.16)

A wall consisting of four layers, with thermal conductivity ki=0.06W/m.K, k3= 0.04W/m.K,
and k4=0.12W/m K. the layer thicknesses are Li=1.2cm, L3=5.6cm, and L4=4cm. The known
temperatures are Ti=30C, T12=25C, and T4=-10C.energy transfer through the wall is steady.
What is interface temperature T34?

Solution

=k
4L
WhereT, =30°C ,T, =25 "CandT, =-10 "C WesolvefortheunknownT .
kLT, (0.06)(4x107?)

T=T +"75%0 (T, ~T)=-10+ ]
k,L (0.12)(1.2x107%)

(30-25)=-1.7C

(b) Parallel , See figure (4.21)

A~

I I TioK; o T2
WA~

Figure (4.21)

y
e
7~
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Example (4.17)
A Styrofoam box used to keep drinks cold at a picnic has total wall area (including the lid) of

0.8 m? and wall thickness of 2 cm. It is filled with ice, water, and cans of cola at 0 °C. What is
the rate of heat flow into the box if the temperature of the outside wall is 30 °C?.

Answer
A=080m’ , L=2cm , T.=0°C , Tu=30°C , k=0.01 Wm.K
R=ka " 0 01x08 30'?2 =120

L 2x10

O=Hxt=12x1x24x3600=1.04x10° J
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4.7.2. Convection
It occurs when a liquid or gas is in contact with a solid body at a different temperature. I.e.

it is required a moving medium see figure (4.22)

G Warm air rises

Cooler air drops and
replaces the warmer air.

=/

Figure (4.22)

Convection @

It volume increases,
then density decreases,

making it bucyant. <55
1p= o air '

cooler air drops

¢ ¥ = constant and replaces the
¢ warmer air

If the termperature
of a given mass of
alr increases, the heater —
volume must increase
by the same tactor.

Figure (4.23)

- It is a heat transfer by mass motion of a fluid diffusion such as air or water when the

heated fluid is caused to move away from the source of heat carrying energy with it.
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-The particles of liquid near the bottom has higher temperature; and low density. So; this
hot particles move upward toward the surface of the liquid. At the same time, the cold
particles(with high density)move downward toward the bottom of liquid. see figure (4.24)
-The types of Convection:

Foreed Natural
convection convection

Figure (4.24)
4.7.2.1. Natural Convection:
in which the motion is caused by the difference in density.
In gravitational field, the hotter, lighter fluid rises while the colder, heavier fluid sinks, figure
(4.24)
4.7.2.2. Forced Convection:

in which the motion is caused by the action of pump or fan.

*The rate of heat flow (or power) (P) is proportional to the area (A) and temperature
difference AT. figure (4.20)

P = (Q / t) = hAAT = hA (I;wface— Tﬂ“id)

Where h, is the convection coefficient.

- Convection is also the process of conduction between a solid surface and moving liquid.

4.7.3. Radiation
It does not require physical contact between the bodies and so the heat energy is

transferred by electromagnetic waves. See figure (4.25)

©
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Radiation ¢
——— e tvans 10
\ o Jff \.f\_‘\

figure (4.25)

- Thermal radiation

It is the transfer of heat energy by electromagnetic radiation, which carry energy away

from the emitting object.

4.7.3.1.Blackbody Radiation (or Cavity Radiation

It is the object (or system) which absorbs all radiation (energy) incident on it and reradiate

energy which is characteristic of the radiating system.

*** The factors affecting on the rate of heat transfer are:

(I)  The absolute temperature of the radiating body. C T.
(2)  The nature of the exposed surfaces. :>A.
(3)  The emissivity of the radiating body. :§

*Emissivity (e): is a measure of body’s ability to absorb or emit thermal radiation. (it has a

numerical value between 0.0 and 1.0).
*The rate of radiation of a body (P/A): is the radiant energy emitted per unit area per

unit time.

4.7.3.2.Stefan's law:

“The rate at which an object radiates energy is proportional to the
fourth power of its temperature”

* The rate of radiated energy or radiated power (P) =gAoT*

Where, Stefan’s Constant (s) = 5.67 x 10° W /m’>.K*

A : is the surface area , . is the emissivity

T : is the absolute temperature (in Kelvin)
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4.7.3.3. Net Energy Gained or Lost by An Object
A body at the absolute temperature (T) is radiating,

T

also, the surroundings of the body at temperature (Ts) radiate
and the body absorbs some of this radiation.

- Puet : Net energy gained or lost per second by the object

as a result of radiation, figure (4.26)

Qnet =Q1 10202101

e e

T2

P, =cAoT' —cAoT =cAo(T*-T")

Where, Stefan’s Constant (s) = 5.67 x 10° W /m’ K*
figure (4.26)

A . is the surface area , & : is the emissivity

T : is the absolute temperature (in Kelvin)

Example (4.18)
A thin square steel plate, 10 cm on a side, is heated in a blacksmith’s forge to a

temperature 800 °C. If the emissivity is 0.6, what is the total rate of radiation of the energy ?
Where, Stefan’s Constant (s) = 5.67 x 10° W/m* K*

Answer

A thin square steel plate 10 cm on aside, 7 = 800 + 273 = 1073 K,e = 0.60

P=AeoT" = [2 x (10 x 10‘2)2] x 0.6 x 5.67 x 10%x (1073)" = 902w
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4.8.The First Law of Thermodynamics
4.8.1.Work in Thermodynamics

% Thermodynamics is concerned with the work done by (or on) the system as well as the heat energy
exchanged between the system and the surrounding medium
¢ We will always consider that most of the operations that will be performed are quasi-static processes,

and therefore the resulting changes in volume, pressure, temperature, number of moles and ... ... are

slight and slow changes, See figure (4.27)

P
p Work = Area under
i curve
|
|
I
|
|
|
N e :
: |
1 1 V
v 7
Figure (4.27) Figure (4.28)
- So,
V2
- dW=PdV W= [PdV
N2

The work is the area under the P-V curve , figure (4.28)

The work done by (or on) the system is not only depend on the initial and final states but
also depend on the path of the process.

For example, we assume that the system moves from the initial state to the final state

through the three paths shown in the figure (4.29)
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(a) (b) (c)

Figure (4.29)
- The work; for the case (a) W=PV,-V)
- The work; for the case (b) W=REV,-V)
v
- The work; for the case (c) dW =PdV = W= IPd V
v

Note that: the work In the previous three cases the value is not equal, so its value depends on
the path.

4.8.2.The First Law of Thermodynamics (Energy Conservation

“The internal energy of a system changes when work is done on the system (or by it),
and when it exchanges heat with the environment™
*Mathematical form, AU=0Q-W = OR =—— dU=d0-dWw

Where, AU : s the change in internal energy
Note that: The change in internal energy is a function that does not depend on the path, but

depends only on the initial and final states

W : is the work done( by or on) the system.
Q : is the exchange heat (added or removed) between the system and the
surroundings.

(+) Heat added, supplied or absorbed.
Q

(<)  Heat removed or lost.

(+)  Work done by the system or the system expanded.
W
)

Work done on the system or the system compressed.

©
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Thermodynamic Process

A thermodynamic process is when heat moves, either within systems or between systems.
There are four types of idealized thermodynamic processes. They are

4.8.2.1.An Isobaric Process

It is a process during which the system’s pressure remains

constant. See figure (4.30)

Find the work done by the gas:

V; V,
W= [PdV=P [dV = P(V -V)
\V \V

1 1

4.8.2.2.An Isothermal Process for Ideal Gas)

b

P

P} ety

I
|
A7

Figure (4.30)

[t is a process during which the system’s temperature remains constant. See figure (4.31)

AU =0 0=W

- Find the work done by the gas to increase its volume from Vi to Vr at constant

temperature?
Since, PV=nRT
So, PanT
\Y
V V
w=Pav= [ "BlgvonrTIn
\ v Vv V.

1

P
—— Isotherm
i

L PV= constant
|
|
|
|
|
|
1

Prr—1
|
v i
figure (4.31)

dog



4.8.2.3.An Isochoric Process

It is a process during which the system’s volume remains constant.

See figure (4.32) -
AV =0 W=0 Pyt--!
I' : l_r
The change in internal energy; AU =0 Vi Vi
Figure (4.32)

4.8.2.4. For Adiabatic Process
No heat exchanged between the system and the surroundings, see figure (4.33)

/lllh‘ ulation

0=0 AU =W

B o=0

ADIABATIC
SYSTEM

figure (4.33)

4.8.2.5. For Cyclical Process
No change in system’s temperature.

There is no change in the temperature of the system (because the system starts from a
state and after a set of consecutive procedures ends in the same case) and thus the internal

energy is constant and does not change.
AU =0 0=W

4.8.2.6. For Isolated Process

No heat exchanged and there is no work done on the external environment
0=0 W=0 AU =0

Example (4.19)
Three moles of helium are initially at 20 ° C, and a pressure of 1 atm. What is the work

done by the gas if the volume is doubled : (a) at constant pressure, or (b) isothermally?
If the R=8.31J/molk,P=1atm=101.3x10’ pascal

Solution
a) Since, PV=nRT
So, Vi=[3x831x293]/[101.3x10°]= 0.072 m?
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The work W =P(V,~¥,)=101.3x10° (2 x 0.072 — 0.072) =7294.
\ \

b W= Pdv= | v prTIa
\Y v Vv Vi

1 1

W=nRTLn%=3x8.3lx293an%= 5063 J

i 1

Example (4.20)
One mole of oxygen expand at constant temperature T = 310 K from an initial volume

of 12 Lit to final volume of 19 Lit.

a) How much work is done by the gas?

b) How much work is done by the gas during an isothermal compression from volume of 19 Lit
to volume of 12 Lit?

Solution
\ 19
W=nRTLn—L=1x831x310xLn—=1184 J
v, 12
W=nRTLn&=1x8.31x310anE= -1184 ]
v, 19
Example (4.21)

Calculate the work done by 1 mole of an ideal gas that is kept at 0 °C in an expansion
from 3 Lit to 10 Lit ?
Solution

W=nRTLn%:1x8.31x273an?= 2731 ]

1




4.9. Problems
Choose The Correct Answer in Each of The Followings:

1) The property that determines whether an object is in thermal equilibrium with other objects.
A) Thermal expansion

B) Pressure

C) Temperature

D) Thermal equilibrium

2) Kelvin temperature scale Thermometer calibrated due to
A) Triple point of water

B) Absolute zero

C) Ice point

D) (A and B)

3) the increase of steel sphere volume is 1.67x10 m* due to the increase of temperature from -
15 °C to 55 °C, if its radius is 1 m then the average coefficient of volume expansion equals

A) 5x1073

B) 11x10°¢

C) 33x10°¢

D) 22x107

4) It does not require physical contact between the bodies and the heat energy is transferred by
electromagnetic waves

A) Conduction

B) Radiation

C) Convection

D) all

5) Celsius temperature scale Thermometer calibrated due to
A) ice melting (ice point)

B) water boiling (steam point)

C) mercury boiling point

D) (A and B)

6) The surface expansion of a square(l= 3 m) of lead
(0=29x10°°C") is 0.0261 m?, then the increase of temperature
A)25 °C

B)40°C

C)50°C

D) 65°C
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7) Suppose object C is in thermal equilibrium with object A and with object B. The zeroth law
of thermodynamics states:

A) that C will always be in thermal equilibrium with both A and B

B) that C must transfer energy to both A and B

C) that A is in thermal equilibrium with B

D) that A cannot be in thermal equilibrium with B

8) The coefficient of linear expansion of steel is 11 x 107 per ‘C. A steel ball has a
volume of exactly 200 cm? at 0 °C. When heated to 100 °C its volume becomes(in cm®) :
A) 200.66

B) 200. 11

C) 200.0011

D) 200.0033

9) The temperature difference between the inside and the outside of a home on a cold winter
day is 57 °F, the difference on the Celsius and the Kelvin scales respectively are.

A) 31.67,31.67

B) 13.89, 286.89

C) 57,57

D) 31.67,304.67

10) An annular ring of aluminum is cut from an aluminum sheet as shown. When this ring is
heated:

A) The aluminum expands outward and the hole remains the same in size

B) The hole decreases in diameter

C) The area of the hole expands the same percent as any area of the aluminum
D) The area of the hole expands a greater percent than any area of the aluminum

11). A calorie is about:
A) 0.24]

B) 8.31J

C) 25017

D) 421

12) The amount of energy per unit mass that must be transferred as heat when a sample
completely undergoes a phase change is called the

A) The specific heat

B) The heat capacity

C) Latent heat




D) The temperature

13)The concrete sections (0=12x10 ‘C™") are designed to have a length of 10.0 m. The sections
are poured and cured at 20 "C. What minimum spacing(in m) should the engineer leave between
the sections to eliminate buckling if the concrete is to reach a temperature of 50 'C?

A)3.6x10° m

B) 6.3x10”% m

C)3x10° m

D) 8.4x10 m

14) A cube of aluminum has an edge length of 20 cm. Aluminum has a density 2.7 g/cm? and
a specific heat 0.217 1 cal/g. “C. When the internal energy of the cube increases by 47000 cal
its temperature increases by:

A) 5°C

B) 10°C

C) 20°C

D) 100 °C

15) Possible units for the coefficient of volume expansion are:
A) mm/C

B) mm’/C

C) (Cy

D) 1/C

16) When the temperature of a copper penny is increased by 100 ‘C, its diameter increases by
0.17%. The area of one of its faces increases by:

A) 0.17%

B) 0.34%

C) 0.51%

D) 0.13%

17) How many calories are required to change one gram of 0 'C ice to 100 'C steam? The latent
heat of fusion is 80 cal/g and the latent heat of vaporization is 540 cal/g. The specific heat of
water is 1 cal/g K

A) 100 cal

B) 540 cal

C) 620 cal

D) 720 cal

18) The specific heat of lead is 0.03 cal/g "C. 300 g of lead shot at 100 °C is mixed with 100 g
of water at 70 "'C (cw=1cal/g. 'C) in an insulated container.

The final temperature of the mixture is:

A) 100°C

B) 85.5°C

C) 79.5°C

D) 72.5°C
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19) A Celsius thermometer and a Fahrenheit thermometer both give the same reading for a
certain sample. The corresponding Kelvin temperature is:

A) -40K

B) 40K

C) 301K

D) 233.15K

20) A Kelvin thermometer and a Fahrenheit thermometer both give the same reading for a
certain sample. The corresponding Celsius temperature is:

A) 574°C

B) 232°C

C) 301°C

D) 614°C

21) The specific heat of a substance is:

A) The amount of heat energy to change the state of one gram of the substance

B) The amount of heat energy per unit mass emitted by oxidizing the substance

C) The amount of heat energy per unit mass to raise the substance from its freezing to its
boiling point

D) The amount of heat energy per unit mass to raise the temperature of the substance by 1°C

22) The coefficient of linear expansion of iron is 10~ per ‘C. The volume of an iron cube,
5 cm on edge, will increase by what amount(in cm? )if it is heated from 10°C to 60°C?

A) 0.00375

B) 0.1875

C) 0.0225

D) 0.0075

23) The zeroth law of thermodynamics allows us to define:
A) Work

B) Pressure

C) Temperature

D) Thermal equilibrium

24) Which one of the following statements is true?

A) Temperatures differing by 25° on the Fahrenheit scale must differ by 45° on the Celsius scale
B) 40K corresponds to —40 °C

C) Temperatures which differ by 10°C on the Celsius scale must differ by 18°F on the Fahrenheit scale
D) Water at 90 °C is warmer than water at 202 °F

25) If two objects are in thermal equilibrium with each other:

A) They cannot be moving

B) They cannot be undergoing an elastic collision
C) They cannot have different pressures

D) They cannot be at different temperatures




26)The coefficient of linear expansion of iron is 1.0 x 107 per °C . The surface area of an iron
cube, with an edge length of 5.0 cm, will increase by what amount( in cm? )if it is heated from
10 °C to 60 °C?

A) 0.0125

B) 0.025

C) 0.075

D) 0.15

27)A balloon is filled with cold air and placed in a warm room. It is NOT in thermal
equilibrium with the air of the room until:

A) it rises to the ceiling

B) it sinks to the floor

C) it stops expanding

D) it starts to contract

28) The figure shows a rectangular brass plate at 0c C in which there is cut a rectangular hole of
dimensions indicated. If the temperature of the plate is raised to 150° C:
A) x will increase and y will decrease
B) both x and y will decrease
C) x will decrease and y will increase
D) both x and y will increase

1

29) The diagram shows four rectangular plates and their dimensions. All are made of the same

material. The temperature now increases. Of these plates:
I

20

3l

i 25 9
] :
1 2 3 4

A) The vertical dimension of plate 1 increases the most and the area of plate 1 increases the most
B) The vertical dimension of plate 2 increases the most and the area of plate 4 increases the most
C) The vertical dimension of plate 3 increases the most and the area of plate 1 increases the most
D) The vertical dimension of plate 4 increases the most and the area of plate 3 increases the most

Q2:

1. Whatis 0 °K on Celsius and Fahrenheit scale?
2. What is the room temperature of 72 °F in Celsius scale?
3. What is the temperature change of 20 °C in both °F and °K scale?
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Chapter (5)

Sound Waves

Content

What is a wave - Classifying Waves -Wave Properties -Types of sound waves — Speed of
sound waves - The relation between frequency and wavelength — Intensity — The Doppler
effect.
Learning Objective
1. Define the major properties of waves: frequency, period, wavelength, energy, amplitude
and velocity, being able to use all of the units and symbols for each.
2. know and recall that the audio frequency range is approximately 20 Hz to 20 kHz;
3. Known the Intensity of sound waves — the Doppler effect
S.1. What Is a Wave?
e A wave is a disturbance that travels through a medium from one location to another.
e A wave carries energy through matter or space without transferring matter.
e There are two main types of waves:
5.1.1. Mechanical Waves: Examples (Water waves , Sound waves , Seismic waves)
e require a material medium to exist. (must have a substance to travel through)
e cannot travel in a vacuum

5.1.2. Electromagnetic Waves: Examples ( Radio waves- Microwaves - Infrared, Visible
and Ultraviolet light - X-rays and Gamma rays.
e do not require a material medium to travel through
e can travel in a vacuum
5.1.3. Classifying Waves:
e Transverse Waves (light waves)
e Longitudinal Waves (Sound waves)
e Transverse Waves involve oscillations perpendicular to the direction in which the waves
travel. See figure (5.1)
e Longitudinal Waves involve oscillations parallel to the direction in which the waves
travel. See figure (5.1)

Z MVVANWIAAAMY

S waves are transverse waves

Figure (5.1)
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Remark 1:
Parts of Transverse waves:
o (Crest: the highest point of the wave
e Trough: the lowest point of the wave See figure (5.2)

Trough

Figure (5.2)

Remark 2:
Parts of Longitudinal waves:
o Compression: where the particles are close together
e Expansion: where the particles are spread apart See figure (5.3)

- A »
Compressed Compressed
MM MAMAAAAAAY MMMMN WAAMANWA H
Stretched Stretched

Figure (5.3) The sound wave consists of condensations and rarefactions.
Remark 3:

Traveling Sound Waves: See figure (5.4)
o Amplitude (A) : Maximum displacement of particle of the medium from its
equilibrium point.
o Wavelength (A ): Distance from crest (max positive displacement) to crest; same
as distance from trough (max negative displacement) to trough.
Wavenumber k=27/4.

e Frequency ([ ) : The number of cycles passing by in a given time. The SI unit for
frequency is the Hertz (Hz), which is one cycle per second.

Angular frequency @ = 27f



o Period (T ) : the time required for one full cycle of the wave to pass by. Period is

1
the reciprocal of frequency: 1 =—.

f

y
) Wavelength Crest
Amplftude
X
Trough
Figure (5.4)
5.2.Sound Waves

* The sound waves are the most important example of longitudinal waves, that travel
through any medium with speed depends on the properties of the medium. See figure (5-3)
* The sound waves cannot be traveled through vacuum, because there is no material to
transmit the condensations and rarefactions.
5.2.1.The Properties of Sound Waves:
e The sound waves are longitudinal waves.
e The sound waves are required a medium to transmit from position to another.
e The speed of sound waves in air at 0 °C = 331 m/sec.
e The speed of sound waves in air at 20 °C = 343 m/sec.
e Pitch is a change in the frequency of the sound wave.

5.2.2.The Speed of Sound Waves in Various Media

*The speed of any mechanical wave (transverse or longitudinal) depends on both inertial
property (to store kinetic energy) and the elastic property (to store potential energy) of the
medium.

5.2.2.1.In case of liquids:

Speed of sound waves depends mainly on two factors such as, the compressibility and nature of
the medium. This means that:

. \/.elast'lc property _ \/E = ()
inertial property P
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Where: B is the bulk modulus of the material and is defined as follow: B = —P.L

AV
V is the volume and AV is the change in volume.
P 1s the density of the material

f is the frequency

A is the wavelength

5.2.2.2.In Case of Metallic Rods:
Speed of sound waves can be calculated according to the following equation:

F L
V:\/Z: 4 AL (59
p p

Where:
Y is the Young modulus of the material (F the instantaneous perpendicular force per unit area

(A). the original length (L), AL : is the elongation or stretch )
and p is the density of the material.

5.2.2.3.In Case of Gasses:

V- JE 53
o,

Where :
v is a constant and is defined as :
Cp
V=
C'V

Where:

C, 1s the heat capacity at constant pressure.
Cy is the heat capacity at constant volume.
P is the pressure and p i1s the density of gas

5.3.Types of Sound Waves:

1- Infrasonic waves have a frequency less than 20 Hz.
2- Acoustic waves have frequency ranged from 20 Hz 0 20000 Hz
3- Ultrasonic waves have frequency greater than 20 kHz

Example (5.1)

Calculate the speed of longitudinal waves:
a) in water; given that the Bulk modulus is 2.1 x 10° N/m? and its density is 10° kg/m?, and
b) in air at 1 atm; given that the Bulk modulus is 1.41 x 10° N/m? and its density
is 1.29 kg/m3 ?
Answer
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: 9
a) v= B o ZIXI0 isag s
p V10

5
by v B 141x10° o
0 1.29

Example (5.2)

If a frequency of 760 kHz is emitted with radio velocity in the order of 3x10% m/sec, calculate
the wavelength?
Answer

Note that:
f=760 kHz = 760x10° Hz, v=3x10® m/sec.

. Vo 3x10°
But, as known: velocity V' = f.A = wavelengthis A = ? = m =395m
Example (5.3)
If the speed of sound wave in water is 1530 m/sec and its frequency is 1800 Hz, calculate the
wavelength?
Answer

From example, v= 1530 m/sec, f= 1800 Hz . The velocity is

V = f.1= wavelengthis A = r = 1530 =0.85m
f 1800

Example (5.4)

Suppose that the bulk modulus (B) of water is 2100 Mpa, calculate the speed (v) of sound
waves in water? Knowing that, © =1000 kg/m?

Answer

Note that:
B=2100 Mpa = 2100x10° Pa, p =1000 kg/m’

But, as known:
6
V= B V= E= M=1449.14 m/sec
P o\ 1000

Example (5.5)

Suppose that the speed (v) of sound waves in steel is 5900 m/sec, calculate the bulk modulus
(B) of steel? Knowing that, © =7900 kg/m?

©
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Answer
Note that:

V=15900 m/sec , 0 =7900 kg/m?

But, as known:

V= |— =
Yo

B=V"xp=(5900)"x 7900~ 2.75x10" Pa

Example (5.7)

A dolphin located in sea water at a temperature of 25°C emits a sound directed toward the
bottom of the ocean 150 m below. How much time passes before it hears an echo?
If The speed of sound in seawater at 25°C is 1530 m/s.

Answer

The speed of sound in seawater at 25°C is 1530 m/s . Therefore, the time for the sound to

reach the sea floor and return is
2(150
Vo 1530 m s

Example (5.8)

The range of human hearing extends from approximately 20 Hz to 20 000 Hz. Find the
wavelengths of these extremes at a temperature of 27°C, knowing that the velocity of the
sound at this temperature is 347 m/sec.

Answer
The wavelength of the 20 Hz sound is gl 3 ms g m,
f  20Hz
. 347 m s o
and that the wavelength for 20 000 Hzis A=————=17x10"” m=1.7cm.
20000 Hz

Thus, range of wavelengths of audible sounds at 27°C is from 1.7 cm to 17 m.

Example (5.8)

Find the speed of sound in mercury, which has a bulk modulus of approximately
2.80 x 10" N/m’ and a density of 13 600 kg/m?.
Answer

o B_J2.80x10‘° N m

— =1.43x10° m/s=1.43Km/s
P 13600 kg m




5.4.The Intensity of Sound Wave (1

It is the average rate per unit area at which energy is transmitted by the wave .

_ Power P

- The sound intensity; [ = = 5 W/m?
dmr dnr

- The maximum pressure variation; Ap,=\2p1V

- Where; I : is the intensity of the sound wave

P : 1s the density of the medium

V : is the speed of the wave

Apm : is the change in pressure
N.B. o :is the angular frequency © = 27f
Example (5.9)

What is the intensity of the sound waves at distance r = 2.5 m from a source if the source
emits energy at the rate P =25 J/s ?

. . P
- The sound intensity; I = ; W/m®
dnr
. . 25 )
- The sound intensity; [= —————=0318 Wm
4x3.14x(2.5)
5.5.The Inverse Square Law
The intensity of waves radiating isotropically from a point g
source is inversely proportional to the square of the distance from the v ‘
source. See figure (5.5) I /

2 A3 /;
Lo (rzj O
I, L Kt

Figure (5.5)

5.6.The Decibel Scale (Intensity Level or Sound Level) (5)

L =10 Log (] / [0) (dB) — where, 1,= 107 (W/ m2) [Standard Reference [ntensity]
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Example (5.10)
Find the sound level in decibels of a sound wave that has an intensity of 10~ W/m? ?
3 I 10°
B —10LogI— =10 Log o 70dB
Example (5.11)
Find the intensity of a sound wave that has an intensity level of 35 dB ?
B =10 LogIl
35 = 10Log101_12 =  I=3.16x10" W/m’
Example (5.12)

The faintest sounds the human ear can detect at a frequency of 1000 Hz correspond to an
intensity of about 102 W/m? (the so — called threshold of hearing). Determine the pressure
amplitudes associated with these two limits. (V = 343 m/s and the density of airtobe p =1.2
kg/m®) ?

Ap;,

- Since; I =
2pV

- - So; Ap, = 2pVI)* = (2 x 1.2 x 343 x 10‘12)%= 287 x 10° N/m’

Example (5.13)
Two sound waves have intensities I and I, . How do their sound levels compare?
IZ
] L_L
L
IO
- Taking log to both sides;
I I I
- log| = | = log| -+ |-log| -
g(lll g[lo\) g(IoJ
I I
- So; 10log| = | = 10log| -* |- 101og L
Il I0 Io
IZ
- So; 101og I_ =B,-B,

&
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Example (5.14)
The sound emitted by a source reaches a particular position with an intensity I, what is
the change in intensity level when another identical source is placed with the first ?

- Since: B, = 101ogG_1J . B, - IOIogﬁ—ZJ
- And; L=L+L=21
- So; B, -B, =1010g(i—2] =1010g(%) =3 dB

1 1

Example (5.15)

A crying child delivers about 1 mW of power, (a) If this power is uniformly distributed
in all directions, what is the sound intensity level at a distance of 5 m ?
(b) What would be the intensity level of two children crying at the same time if each delivered
1 mW of power?

3
- Since; I, = P = = 1x10 - =3.183x10° W/m’
4nr 4x3.14x(5)

6

- So; B =10L0g;—1 =10L0g% - 65.03 dB

- When another one crying; I =1+1=21=6366x10°W/nm
6

- So; B =10Log1l =10Log% ~ 68.04 dB

o
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5.7.The Doppler Effect ,See figure(5.6)

The Doppler Effect for a Moving Soumud Sownce

Lowr Frequency High Frequency

Obgerver B
S
oo o > A
v

7 /
Observer A

Figure (5.6)
It is a phenomenon in which the measured frequency (f°) is different from the source

frequency (f) because of the relative motion between them.
*Assume; 'V :speed of wave. V, : speed of observer; Vs : speed of source

5.7.1. Observer moving and Source at rest

f'=r [V i\'/VO j (+) = approach,toward (-) = apart,away from

1- The frequency heard by the observer, f* appears higher when the observer
approaches the source /' = f (V ;V‘) J

2- The frequency heard by the observer, f°, appears lower when the observer moves
away from the source f” = f (V ;V‘) j

5.7.2. Source moving and Observer at rest

[V
/ _f{ViVS

1- When the source is moving toward the observer, the apparent frequency is higher
\Y
f=fl o
V-V,
2- When the source is moving away from the observer, the apparent frequency is

10werf'=f[V1/V ]

J (-)=>approach,toward (+) = apart,away from




5.7.3. Both Observer and Source moving

+ —_
— |= approach,toward | — |= apart,away from
e~
Vo VS Vo VS
— — — —_—
V+V, , 4 V=V,
Vo Vs Vo Vs
— — _— —_—
, A V=V, , A V+V,

Example (5.16)

A train moving at a speed of 40 m/s sounding its whistle, which has a frequency
of 500 Hz. Determine the frequency heard by a stationary observer as a train approaches and
then recedes from the observer. Take V =343 m/s for the speed of sound in air ?

V=40 m/s Vo=0m/s V=343 m/s f= 500 Hz

As the train approach;

343
- 500 x =566 Hz
f f{ -V J (343—40]

As the train recedes;

- ff[

} SOOX( 343 J=447.8 Hz

V+V. 343+ 40

Example (5.17)

An ambulance travels down a highway at a speed of 33.5 m/s. Its siren emits sound at a
frequency of 400 Hz. What is the frequency heard by a passenger in a car traveling
at 24.6 m/s in the opposite direction as the car approaches the ambulance and as the car moves
away from the ambulance ?
Vs=335m/s Vo=246 m/s V=343 m/s f= 400 Hz

Vo Vs
- As the car approach the ambulance; —_— —
: r=15 VY, 400X(M] - 475.1 Hz
V-V, 343-33.5
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Vo Vs
- As the car moves away from the ambulance; — —_—
: Fr= Y=Y =4OOX[MJ=338.3 Hz
V+V, 343+33.5

Example (5.18)

A stationary source emits a whistle at a frequency of 200 Hz. If the velocity of

propagation of the sound wave 1s 343 m/s, find the observed frequency if (a) the observer is

approaching the source at 25 m/s and (b) the observer is receding from the source at 25 m/s.

Vs=0m/s V,=25m/s V=343 m/s f= 200 Hz

As the observer approach;

: f':f[V+V° ) _ ZOOXEMJ _ 2146 Hz
\Y 343

As the observer recedes;

- f’:f[v_v" j = 200x(7343_25j = 1854 Hz
\% 343

Example (5.19)

A researcher notices that the frequency of a note emitted by an automobile horn appears
to drop from 284 cycles/s to 266 cycles/s as the automobile passes him. Calculate the speed of
the car, Take V = 1100 ft/s as the speed of sound in air ?

Vo=0 ft/s V= 1100 ft/s f= 284 Hz /= 266 Hz

As the automobile passes the researcher;

- f=f v = 266 = 284 x 100 =V.=74.44 ft/s
V+V, 1100+ V
- Example (5.20)

An airplane is flying at Mach 0.5 and carries a sound source that emits a
1000 Hz signal. What frequency sound does a listener hear if he is in the path of the airplane
after the airplane has passed?
- Note That; Mach = the speed of the sound in air

Vo= 0m/s V=343 m/s Vs = 0.5 Mach=0.5x343=171.5 m/s
f= 1000 Hz =72

- As the automobile passes the researcher;
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\% 343
i = =1000x| ———— | = 666.7 Hz
/ f[V VSJ ( }

343 +171.5

5.8.Standing Waves in Air Columns
o The standing waves in the air tubes (such as the argon machine) are formed as a
result of interference between the longitudinal waves that move in opposite
directions.
o The relationship between the fallen wave and the reflected wave is dependent on the
state of the tube (is it open from both sides or is it open from one side)
5.7.1.0pen at Both Ends See figure(5.7)
o The two waves (the incident wave and the reflected wave) is nearly in phase.

o The wavelength is twice the length of the pipe.

e
- /—‘ A| =2L
- - - i _ 1_ First harmonic
‘A_WA m -9/, Second harmonic

Ay = - L ; .
3 Third harmonic
h=51=%
(a) Open at both ends
Figure (5.7)
- So; f,,=%V ; fo=nfi n=1,2,3,......

f1: 1s the fundamental frequency

f2 : is the second harmonic f2=2fi

f3 : is the third harmonic f3=3fi

fn:is the n® harmonic fa=nfi

L :length of the pipe

Note;

“In a pipe open at both ends; the natural frequencies of vibration from a harmonic

series, that is, the higher harmonics are integral multiples of the fundamental frequency”

©
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5.7.2. Closed at One End ,See figure (5.8)

e The reflected wave is 180° out of phase with the incident wave .

e The wavelength is four time the length of the pipe.

A' = 4’.

First harmonic

Third harmonic

Fifth harmonic

5v
4L 5h

(b) Closed at one end, open at the other

Figure (5.8)
- So; fn=f,,=1V ; fo=n fi n=1,3,5,....

Note;
“In a pipe closed at one end; only odd harmonics are present ”
Example (5.21):

e Determine the wavelength 4 , the period T, the frequency f, the amplitude A and the
speed V see figure(5.9) and (5.10)

- Y()(m) sement Vs ....o......... time
0_2 - - =

i X Z N\ /

5 t(ms)
T PP . 0
02 el
-04
Figure (5.9)

&




Y(x)(m) acement Vs ............. .. position |
P il M
0 a4 o5 06 \a> as
N1
Figure (5.10)

From “Displacement Vs displacement” we read A =0.4m
From “Displacement Vs time” we read T =40ms
From the two curves, we read A=0.3m

With these results, we can calculate:

r=to 1 o5y

T 40x107
V=Axf=04x25=10ms

Chapter 5 Sound Waves

x(m)
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5.9. Problems
Choose The Correct Answer in Each of The Followings:
1) Infrasonic waves have a frequency less than:
A) 10 Hz
B) 2 Hz
C) 20 Hz
D)50 Hz

2) The speed of a sound wave is determined by:
A) its amplitude

B) its intensity

C) number of harmonics present

D) the transmitting medium

3) A sound wave has a wavelength of 3.0m. The distance from a compression center to the
adjacent rarefaction center is:

A) 0.75m

B) 1.5m

C) 3.0m

D) need to know wave speed

4) The sound intensity 5.0m from a point source is 0.50W/m?. The power output of the source is:
A) 39W

B) 160W

C) 266W

D) 320W

5) The standard reference sound level is about:

A) The threshold of human hearing at 1000 Hz

B) The threshold of pain for human hearing at 1000 Hz

C) The level of sound produced when the 1 kg standard mass is dropped 1m onto a concrete floor
D) The level of normal conversation

6) The intensity of sound wave A is 100 times that of sound wave B. Relative to wave B
the sound level of wave A is:

A)-2 dB

B)+2 dB

C)+10dB

D) +20 dB

7) When a sine wave is used to represent a sound wave, the crest corresponds to:
A) Rarefaction

B) Condensation

C) Point where molecules vibrate at a right angle to the direction of wave travel
D) Region of low elasticity
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8) A sound wave coming from a tuba has a wavelength of 1.50 m and travels to your ears at a
speed of 345 m/s. What is the frequency of the sound you hear?

A) 517 Hz

B) 1/517 HZ

C) 230 Hz

D) 1/230 Hz

9) A series of ocean waves, 5.0 m between crests, moves past at 2.0 waves/s.
Find their speed.

A) 2.5 m/s

B) 5.0 m/s

C) 8.0 m/s

D) 10 m/s

10) If the tension on a guitar string is increased by a factor of 3, the fundamental frequency
at which it vibrates is changed by what factor?

A) 9

B) 3

C)\3

D)%

11) What phenomenon is created by two tuning forks, side-by-side, emitting frequencies, which
differ by only a small amount?

A) Resonance

B) Interference

C) The Doppler Effect

D) Beats

12) The.......... is defined as the number of cycles of a periodic wave occurring per unit time.

A) wavelength
B) Frequency
C) Amplitude
D) Period

13) Many wave properties are dependent upon other wave properties. Yet, one wave property is
independent of all other wave properties. Which one of the following properties of a wave is
independent of all the others?

A) wavelength

B) Frequency

C) Velocity

D) Period

®
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14) Consider the diagram below of several circular waves created at various times and
locations. The figure (5.11) (diagram) illustrates

A) Interference

B) Diffraction A B
C) The Doppler Effect. . *
D) Polarization

Figure (5.11)
15) The time required for the sound waves (v = 340 m/s) to travel from the tuning fork to

point A(in second) Is........... see figure(5.12)

Figure (5.12)

A)0.020
B) 0.059
C) 0.590
D) 2.900
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Chapter (6)

Kinematics and Vectors

6.1.Mechanics Deals with The Motion of Objects
1. What specifies the motion?
2. Where is it located?
3. When was it there?
4. How fast is it moving?

B Mechanics of the broad science concerned with the movement of objects and their causes,
and the ramifications of this other branches of science such as kinematics and Dynamics.
Kinematics cares science as the movement of objects without regard to their causes; while
aware of the dynamics it studies the movement of objects and their causes such as strength
and mass.

The motion is define as a continuous change in the position of an object.

6.2. Type of Motion:

1) Translational motion: such as (car moving down a highway)

2) Rotational motion: such as (Earth’s spin on its)

3) vibration motion: such as (back-and-forth movement of a pendulum)
6.3. Translational Motion:

In general, suppose that a particle is a point-like mass having infinitesimal size respect to

the distance moving.
6.3.1 Define Vector and Scalar:
Vector is defined as a physical quantity that requires the specification of both direction and

magnitude. Such as (velocity, force, displacement) as shown figure (6.1).

P
o Figure (6.1) |

X C/_
Scalar is defined as a quantity that has magnitude and f
no direction. \
Such as (mass, ., distance,.......... ) 5m
Example (6.1)
Calculate the distance and displacement traveled the
particle which show in the following figure (6.2)? X

W

I
Figure (6.2) &
A 4m




(PHY'S TOTQ) vereessersoessessoessessoessessoes oo oo ——

Solution:
Distance x=ABC =4m+5m=9m

Displacement Ax=x , —x, = AC
(CB)' =(4B)" +(4C)

(4C)’ =(CB)* —(4B)’ =25-16=9
Ax=AC=3m

6.3.2. The Properties of Vectors.
6.3.2.1. Equality of Two Vectors

Two vectors A and B are equal if they have the same magnitude and the same direction
regardless of the position of their initial points as in Figure (6.3).

A

Figure (6.3) Figure (6.4)
6.3.2.2.The Negative of a Vector
The negative of a vector A is another vector having the same magnitude as A but its direction is
opposite to A, as in Figure (6.4). It is denoted by ( -A ).
6.3.2.3.The Sum or The Resultant of Two Vectors A and B
is another vector C. To obtain the vector C geometrically we have two rules.
6.3.2.3.1.Triangle Rule.
From, Figure (6.5) and Figure (6.6)when draw a line from the free tail of B to the free head of
A to construct the vector C

/ -~

B
Figure (6.5) Figure (6.6)

6.3.2.3.2.Parallelogram Rule

A and B are draw as two sides of a parallelogram, then C is its diagonal, see Figure (6.7)

Figure (6.7)




6.3.2.3.3.The Polygon Rule

The sum or the resultant of a group of vectors A, B, C, and D is a vector E as shown Figure
(6.8)

B

Figure (6.8)

6.3.2.4.The Difference of Vectors
The difference of vectors A and B represented by A-B is the sum of vector A and the negative

of vector B. C = A + (-B), see Figure (6.9)

B

Figure (6.9)

1- Vector Addition of 4 and B in tow dimensions is

See figure (6.10)

C=A+B= (A, +B)i +(4,+B))j

2-The subtraction of 4 and B in tow dimensions is / _
See figure (6.11) ; ;
C=A-B= (4 -B)i +(4,-B,)j - N

Figure (6.11)
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Any vector in three dimensions A=A4,i+A4,j+Ak and. B=Bi+B j+Bk

3-Addition of two vectors:
C=A+B= (A, +B)i + (4,+B)j+(4 +B)k

4- Vector Product

4-1 Scalar (Dot) double product B

Also called (Parallel Product) A//B :
AB=ABcos(4,B)= AB +AB, +AB.
Also A.B =|4||B|cos@®) figure (6.12)

It is also referred to as the projection of A4 onB , or vice versa.
See figure (6.12)

1
— Bcos§

>

Where

AB _ AB,+AB, +AB.
|48 |48

e |d|and |B| are the amplitude of the two vectors

4= [ £+ £+ 4> =JAd and |B|=[B>+ B>+ B =VB.B

e (@ is the direction between A and B cos(@) =

4-2 Vector (Cross) double product (perpendicular product 4 1L B )

C= Ax B= ABsin(6)= area of Parallelogram see figure (6.13)
i j ok
C=AxB=|A, A, A |=(A,B.—AB)i+(AB, —~AB)j+(4B,~AB)k
B. B, B.
C=AxB
B
0

Figure (6.13)

&




4-3 Scalar triple product
A A 4
A(BxC)=B, B, B, =
c.C, C.
A(BxC)=4B,C.+ A B.C.+AB.C,~AB.C,~ A B.C.~ AB,C,
Also,  A(BxC)= C(AxB)=B(CxA)
Note:

fxf:jxj:l;xlgzo
i

4-4 Vector triple product 4 LB
A=Ai+Aj+4k, B
Therefore, BxC = BnyE

Bi andC=Ci+C,j.

-y
.
E:m ==

AxBxC)=| 4, 4,
0 0 BC|=4BCi-4BC,j

yox Ty
= ABCi+ABCi- ABC,j-ABC,i
=B,i(4,C,+4,C,) 4B,(Ci+C,j)-
So that
Ax(BxC)=B(AC)-C(A.B)

Example (6.2)

3 Chapter 6 Kinematics and Vectors

We have A=2i +4; & B=5i +2 ,See figure (6.14)

Calculate the A+B & A-B

A=2i+4]&B=5+2] = A+B=(+5)i +(4+2)j =7i +6]

A-B=(2-5)i +(4-2)j =-3i +2]

Figure (6.14)




(PHYS 1010)

Example (6.3)
We have A=2i +4] & B=5i +2]
Calculate the angle A, Bbetween 0
A=2i+4j&B=5i +2]
AeB=(2)(5)+(4)(2)=18
A= (42 + 4 =244 =120 and

|B]= B2+ B =\542% =29

- = 18
alsoAe B=|A4/B|cos(@)&cosld = ———=0.748=
[4Bleos®) V20429
0=41.6%
Example (6.4)

We have A=2i +4] & B=5i +2]

Calculate the ’;4 +E’ & ’;1 —E‘
A=2i+4j&B=5+2j=> A+B=2+5)i +(4+2)j=T7i +6j
3B VT46 =53

A-B=(2-5)i +(4-2)j =-3i +2j

]Z-E\:J “3)2+(2) =413

6.4.Kinematics of Motion

The position of an object along a straight line can be uniquely identified by its distance
from a (user chosen) origin x;. (See Figure 6.15).

- —
pd
' |
! I
i xT
Vi v

Figure (6.15)

The motion in one dimension i.e in X -direction

6.4.1.Displacement :
Displacement vector which represent the change in the position vector

Ax=dx=x,—x, (6.1)
Where, xi is the initial point , and Xt is the final point




interval: see Figure (6.16) —H-H=
= Xp—X  Ax //
V = V = — = —= Vf - I/z (6,2) A [ ‘ ‘:,1.",‘- 7: T :‘1,‘ !

t,—t, A I

Figure (6.16)

o The x indicates motion along the x-axis
o Is also the slope of the line in the position — time graph

Where, x; is the initial displacement and x is the final displacement. t; is the initial time tris
the final time

The instantaneous velocity of a particle is defined as the limit of the average velocity as the
time interval approaches zero.

. A dx
V=lim —=— 6.3
lm = (63)

The unit of the velocity is (m/s)

Average Speed

o Speed is a scalar quantity.

o Average Speed= total distance / total time.

o The speed has no direction and is always expressed as a positive number
6.4.3. Acceleration “a” :

The average acceleration of a particle is defined as the ratio of the change in the instantaneous

velocity to the time interval. see Figure (6.17) v, oo b
32
V.-V. A
a=t "0 A, (6.4)
t,—t, At

Where, vi is the initial velocity and vy is the final velocity

AT
Er
h ]

o
"

Figure (6.17)

o In one dimension, positive and negative can be used to indicate direction
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The instantaneous acceleration is defined as the limiting value of the ratio of the average
velocity to the time interval as the time approaches zero.

AV _dv d*x
a=m—=—- andforx—directiona, =—— 6.5
w0 At dt 4 todr (65)
The Instantaneous acceleration equal slope of drawing tangent line of curve at the

instantaneous time t

Example (6.5)

a particle moves with the x coordinate equation given by: x =3¢ +4¢
Find its velocity and acceleration.

Solution:
x =3t +4¢ 0
The velocity of the particle can be found
asV=@=9z2+4 m/s ()
dt

the acceleration of the particle can be found by differentiating eq. (2)

a=d—V=18t mls
dt

2

Example (6.6)

a particle moves with the x coordinate equation given by:
X(t)=7.8+9.2t 2.1

Find its velocity and acceleration and velocity of the object at (t = 3.5sec)

Solution:
Velocity is given by

V=@=i(7.8+9.2t—2.1t3)=9.2—6.3t2 mls
dt dt

Acceleration is given by a = % = %(9.2 —-6.3t7)=—6.3x2t =-12.6¢ mls’
The velocity of the object at (t = 3.5 s) can now be calculated:
V=92-63t> =9.2-6.3(3.5)° ~ 68 mls
a=—063x2t=-12.6t=-12.6x(3.5)=—-44.1 mls

2




Example (6.7)
Find the acceleration from a time-velocity graph see Figure (6.18)

6

Solution . - ”
a:ﬂ:_o =0 ml/s’ 4
dt 3-0 2
%3
2,

-

Q

T T
1 2 3
Time(s)

Figure (6.18)

(=]

6.5. Kinematic Equations
o The kinematic equations can be used with any particle under uniform acceleration.
o may be used to solve any problem involving one-dimensional motion with a constant
acceleration
o You may need to use two of the equations to solve one problem

6.5.1. Motion at Constant Velocity

Suppose particle moves along a straight line, which we will use as the x-axis.

Then for constant velocity, Can we obtain x(t)fromv_? x 4
See Figure (6.19)
dx
V. =—= 6.6 >
PEC (6.6) >t
X

by integration equation (6.6) we have

X t

J‘dxzijdt:>x=x0+th:> 2

Xo 0 4
X, =x+Vt (6.7) ;

Figure (6.19)
6.5.2.Motion with Constant Acceleration
Let’s assume our motion is along the x axis, and represents the X component of the

acceleration.
Then for constant acceleration, Can we obtain 7, and x(t) from a_? See figure (6.20)
dv.
a, =—>=c (6.8) Uy
dt SIn];u_' —
By integration equation (6.8) we obtain v, '
Idvx zaxjdtz V.=V,+at or
Vo 0
V,=V.+at (6.9)

Figure (6.20)
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Here, V) is the initial velocity must be known in the calculation
By integration equation (6.9) we obtain x(t)
dx=Vdt=V,+a t)dt=
Idx = I(VO +tat)dt=>x—-x,= V0t+%axt2 or
0

X0

X, =)cl.+V01.t+%axt2 (6.10)

Example (6.8)

A body starts its motion at 5 m from origin and end its motion at 30 m from origin calculate its
velocity if it takes 4 sec.
Solution: The final point can be calculated as:

X, =x+Vt=>30=5+Vx4=25=4V =V =625 m/s

Which mean that the body will reach a point at 30 m far from the origin after 4 sec. At velocity
6.25 m/s

Example (6.9)

A car starting from rest attains a speed of 28 m/sec in 20 sec. Find the acceleration of
the car and the distance it travels in this time

Solution
Ve=V, 28-0
ax = Z =

Av=(x, —x) =Vt +%axt2 = (0% 20) +%(1.4)(20)2 = 280m

=1.4m/sec’

Example (6.10)

A bicyclist accelerates at a rate of 4 ft/sec?. If she starts at rest and accelerates at this rate for 5
seconds, what is her final velocity and what distance does she go?

Solution

V,=V,+a1=0+(4x5)=20/i/sec

A= (=) =Vt = 0%3)+ 2 (S =50

Example (6.11)
How long does it take a car going 30 m/sec to stop of it decelerates at 7 m/sec??
Solution
V.=V +at=
t= i = 0=30 =43sec
a -7

X, =x Vi ;axﬁ = x, =0+(30x43)+ (;)(—7)(4.3)2 = 64.29m
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6.5.3. Free Fall

Free fall i.e. Motion of an object moves only under the influence of gravitational acceleration
g (9.8 m/sec?). The Kinematics equation become

V=V,+gt
1L o
X :xO+V0t+§gt

V=V, +2gx (6.1

Galileo's (1564) experiments produced a surprising result .
All objects fall with the same acceleration regardless of mass and shape. See figure (6.21)
g=9.8m/s> or 32ft/s neglecting air resistance

V=V, -gt ﬂ
. -y (+g)
y=y+ oV Vgt down
| ty (-g)
y=yothi = et up
V=5 +28(y= ) (6.12)
Figure (6.21)
Example (6.12)

A stone is dropped from rest from the top of a building. After 3sec of free fall, what is the
displacement y of the stone?

Solution
From equation

1
y=yo+Vot—5gt2

y= 0+0-%><(9.8)(3)2 = —44.1m

®
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Example (6.13)
A stone is thrown upwards from the edge of a cliff 18m high as shown in Figure (6.22).1t just
misses the cliff on the way down and hits the ground below with a speed of 18.8m/s.

(a) With what velocity was it released?

(b) What is its maximum distance from the ground

e ey
1

during its flight? i
. §prerg T
a) From equation o
2 2 1&m ? :
V=V +2e(v-y) = g ;
2 12 :
(18.8)* =12 +2x9.8x(18) = fil*Lm&ﬂ
(18.8)> =V> =(18.8)> =2x9.8x(18)=0.64 =V, =0.8m/s X

Figure (6.22)

(b) The maximum height reached by the stone is

2 2

pel U8 e
2¢ 2x98
Example (6.14)

A student throws a set of keys vertically upward to another student in a window 4m above as
shown in Figure (6.23) . The keys are caught 1.5s later by the student.

(a) With what initial velocity were the keys thrown?

(b) What was the velocity of the keys just before they were caught?

Solution

|
(a) we find *—}—/\E
4.00 m
L‘_

1
y=yw”w—5gf

‘{\é -:?I

S
I ??:}_Aiﬁ*ﬁt
4=0+Lﬂ3—5x98x05fzng=1aomnm s -=i R
Figure (6.23)

(b) The velocity at any time ¢ > 0 is given by
V=V, +at=

V=V,-—gt=V=10.02-9.8x1.5=-4.68m/s

6.6. Dynamics

is a branch of physics (specifically classical mechanics) concerned with the study of forces and
torques and their effect on motion, as opposed to kinematics, which studies the motion of
objects without reference to its causes.




There are many types of power found in nature, which are either mechanical or attractive or

magnetic or electrical or nuclear. Figure (6.24)
We will examine this decision of the type I and II. Mechanical Power study we will begin to

study Newton's laws of motion.

Type of force

Y O

Contact forces Field forces

involve physical contact between two objects Not involve physical contact between two
objects but insted act through empty space

¥ ——
| T ARARE | 2 AP
. ! =
o W | M
_________ - - : oW |
I |
7y =
e | € — 2 +Q
e il g
1 S8 : D e |
! 7 4 ]
S & <=
] ! J ) -
Figure (6.24)

6.6.1.The Concept of Force:

The force defined as: this exerted force can cause a change in velocity, and causes a body to
accelerate. See figure (6.25)

Force action

v J

Do not causing motion Causing motion
Such, Push on wall and not be able move it Such, exerted force on small mass
Result, change in velocity

No change in velocity

P>

. ,__'_,_._

Figure (6.25)

6.6.1.1Normal Force (Perpendicular Force) “n”

is defined as this force prevents the object from falling through the surface and can have any
magnitude needed to balance the downward force Fg

Also, Normal force (force perpendicular to motion)
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Question) Why does the TV not accelerate in the direction of F at rest on a table, as shown in
Figure (6.26)?
Answer:

The TV does not accelerate because the table exerts on the TV an upward force called the
normal force.

F,

Figure (6.26)

ma=mg-n=0 (6.13)
Also, The normal force is a contact force that acts at the surface between two objects i.e. is
just large enough to prevent objects from penetrating through each other and is not necessarily
equal to the force of gravity in all situations.

Notes

If someone stacks books on the TV, the normal force exerted by the table on the TV
Increases.

Net Force

Because forces are vectors, we must add them as vectors

Fo=YF=F+F+...+F

i

st

6.6.2 Newton's First Law (Force and Inertia):

The law of equilibrium states that an object at rest will remain at rest and an object in motion
will remain in motion with a constant velocity unless acted on by a net external force

ﬁmziﬁi:o (6.14)

n n n

ZE,xZO &ZFZ,yZO &ZF;,Zzo




6.6.3. Newton's Second Law:
The law of acceleration, states that the acceleration of an object is directly proportional to the
net force acting on it and inversely proportional to its mass.

axcF=F=ma
_dp AV

F="L-m™ —ma oryN F=ma 6.15
dt dt Z (6.15)

Units the force where m is the mass of the body by Kg and « is the acceleration of the body by
m/s?, then the unit of the force is (Kg.m/s?) which is called Newton (N)

6.6.4.Newton's Third Law (Action and Reaction)

State that: The action force is equal in magnitude to the reaction force and opposite in

direction,

If two objects interact, the force F12 exerted by object 1 on object 2 is equal in magnitude to
and opposite in direction to the force F»1 exerted bi object 2 on object 1: See Figure (6.27)

1:II_' le
Figure (6.27)
-The force F12 1s called action force
- the force F is called reaction force
Example (6.15):
Find the force required to move an object of mass 3000 Kg at an acceleration 3 m/s*
Solution:
According to Newton's second law
F =ma then F = 3000(3) = 9000 N
Example (6.16):
A small boot with an engine produces a force of 30000 N moving at acceleration 30 m/s? find
its mass.
Solution:

According to Newton's second law
F=ma=>m=F/a=m =30000/30 = m = 1000 Kg
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Example (6.17):
Find the tension in a rope hanging a mass 100 Kg to the ceiling, where g=9.8 m/s?
Solution:

According to Newton's second law
T =mg=T =100 (9.8) = 980 kg.m /s’

Example (6.18):

Two forces, F1 and F>, act on a Skg mass. If F1 =20 N and F> =15 N, find the acceleration in (a)
and (b) of the Figure (6.28)

Figure (6.28)
Solution
The acceleration in Figure (6.27) (a)

According to 2" Newton law

Y F=Fi+F, j=ma=Y F=(20i+15/)=5a=
a=bi+3j)ora=\4+3 =\25="5m/s>

The acceleration in Figure (6.27) (b)
According to 2" Newton law

Y F=Fi+F, j=ma

F, =15co0s(60)=7.5N

F =20N+7.5N =275N

F,=F,, =15sin(60) = 13N
Y F=Fi+F, j=(275i+13j)=ma=5a

a=(5.5i+2.6 j)ora=+5.5"+2.6" =v37.01 =6.084m/ s’

Example (6.19)
As shown in the figure, a 3kg block is pulled up a 35° inclined plane by a 40 N force
parallel to the plane see Figure (6.29) N F

Calculate the acceleration of the block.

If it starts from rest, position after 2 second and normal force?

mg sin 6

Figure (6.29)




Solution
We consider the inclined plane as the x-axis. The net force acting on the body along the x-
axis is, considering the positive direction is the motion direction (up the plane)
ZFX =0=then F —mgsin(0)=ma =
4o F—mgsin() 40-(3x9.8xsin35)

m 3

=771m/s*

Using the equation of motion of the form with the fact that the block starts from
X =Vt +%at2 = butv, =0(atrest)thenx = %at2

We find that the distance covered in 2 seconds is
1

x=—at’ :1><7.71>< 2° =15.42m

2 2
Normal force (force perpendicular to motion) is
Y F,=0=then N-mgcos@)=0=

N =mgcos(@) =3x9.8xcos(35) =24.08 N

Example (6.20)
A constant force of magnitude of 20N is applied, at
angle of 6=30° above the horizontal to move a body
of mass 4kg on a frictionless table as figure (6.30)

. Find the acceleration and the normal force on the body.

Solution

W=mg

According to 2" Newton law ) F =ma
but motion in x-direction then figure (6.30)
ZFX =ma = F cos(@) = ma =
. Fcos@) 20xco0s30
m
To find normal force on the box, we consider the motion along the y-direction with no
acceleration, which is i.e
D> F,=0=N+Fsin(0)-mg=0=

N =mg —Fsin(@) =4x9.8—-20sin30=29.2N

=4.33m/s’
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6.7. Problems
Choose The Correct Answer in Each of The Followings:
1) A particle moves along the x axis from x; to x r. Of the following values of the initial and
final coordinates, which results in the displacement with the largest magnitude?
A) xi= 4m, x /= 6m
B) xi=—-4m, x ;= -8m
C) xi=—4m, x/=2m
D) xi=-4m, xy=4m

2) A car starts from Hither, goes 50 km in a straight line to Yon, immediately turns around, and
returns to Hither. The time for this round trip is 2 hours.

The magnitude of the average velocity of the car (km/hour) in for this round trip is:

A) 0

B) 50

C) 100

D) 200

3) The coordinate of an object is given as a function of time by x = 7¢ — 3£, where x is in
meters and ¢ 1s in seconds.

Its average velocity over the interval fromr=0to =2 s is:

A) 5m/s

B) -5 m/s

C) 11 m/s

D) 1 m/s

4) The position y of a particle moving along the y axis depends on the time ¢ according to the
equation y = at — b*. The dimensions of the quantities @ and b are respectively:

A) LYT, L3/T?

B) L/T?, L¥T

C) L/T, L/T?

D) LT, T?/L

5) Two automobiles are 150 kilometers apart and traveling toward each other. One automobile
is moving at 60 km/h and the other is moving at 40 km/h. In how many hours will they meet?
A) 2.5h

B) 2.0h

C) 1.75h

D) 1.5h

6) The coordinate of an object is given as a function of time by x = 77 — 3£, where x is in
meters and ¢ is in seconds. Its velocity at # = 3s is:

A) -6 m/s

B)-11 m/s

C)-21 m/s

D) 9 m/s
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7) Which of the following five coordinate versus time graphs represents the motion of an object
whose speed is increasing?

X X X

A) 1

B) I

C) 11

D) IVand V

8) This graph shows the position of a particle as a function of time. What is its average velocity
between ¢ = 5s and ¢ = 9s?

A) 3 m/s
B) -3 m/s
C) 12 m/s
D) -12 m/s
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9) Over a short interval near time ¢ = 0 the coordinate of an automobile in meters is given by
x(f) = 27t — 4.0£, where t is in seconds. At the end of 1.0 s the acceleration of the automobile is:
A) 23 m/s?

B) 15 m/s?

C) —4.0 m/s?

D) —24 m/s?

10) Over a short interval, starting at time ¢ = 0, the coordinate of an automobile in meters is
given by x(f) = 27¢ — 4.0£, where  is in seconds. The magnitudes of the initial (at # = 0)
velocity and acceleration of the auto respectively are:

A) 0m/s; 12 m/s?

B) 0 m/s; 24 m/s*

C) 27 m/s; 0 m/s*

D) 27 m/s; 12 m/s?
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11) Starting at time ¢ = 0, an object moves along a straight line with velocity in m/s given by
V(f) = 98 — 22, where ¢ is in seconds. When it momentarily stops its acceleration is:

A) 0m/s?

B) —4.0 m/s?

C) 9.8 m/s*

D) —28 m/s?
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