The exam consists of **30 Multiple Choice Questions**Choose the correct answer out of **5 Options**Each correct answer is worth **0.5 Mark**

Section 1 (Prefixes for powers of ten): Q1, Q2 and Q3

(Q1) The prefix **Tera** equals:

A	В	С	D	Ε
10^{12}	10^{-9}	10^{3}	10^{-3}	10^{-6}

(Q2) The prefix milli equals:

A	В	С	D	Е
10^{9}	10^{-9}	10^{3}	10^{-3}	10^{-6}

(Q3) The prefix Giga equals:

A	В	С	D	Ε
10^{-9}	10^{9}	10^{3}	10^{-3}	10^{6}

Section 2 (Units and Dimensions): Q4, Q5, Q6, Q7, Q8, Q9, and Q10.

(Q4) The SI base units have the dimensions of:

A	В	C	D	Е
Mass, Weight,	Length, Density,	Mass, Length,	Weight, Length,	Mass, Length,
Time	Time	Time	Time	Speed

(Q5) A quantity has a dimension of $[M\ L\ T^{-2}],$ then its unit in (SI) :

A	В	С	D	E
$Kg.m^{-2}.s^2$	$Kg.m^2.s^{-2}$	$Kg.m.s^{-2}$	$Kg^2.m^2.s$	$Kg.m.s^{-2}$

(Q6) A quantity has a unit of $Kg.m^{-2}$, then its dimension is:

A	В	С	D	Е
$M^2 L^2 T^2$	$ M L^2 T^2 $	$M^2 L T$	$[M\ L^{-2}]$	$M L^{-1} T^{-2}$

(Q7) The dimension of Acceleration is:

A	В	С	D	Е
$M^2 L^2 T^2$	$[L^2 T^2]$	$[L T^{-2}]$	$[L^{-2} T]$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

(Q8) The unit of Stress is:

A	В	С	D	Ε
m / s	${ m Kg}\ /\ m^3$	W (Watt)	N/m^2	Ν

For the questions $\mathbf{Q9}$ and $\mathbf{Q10}$: The Gravitational Force F_g can be calculated according to the formula:

$$F_g = G \times \frac{M \times m}{r^2},$$

where $\mathbf{G} = \text{Gravitational constant}$; $\mathbf{r} = \text{Distance}$; (\mathbf{M} and \mathbf{m}) = two Masses .

(Q9) The Unit of G is:

A	В	С	D	E
$Kg^2.m^2.s^2$	$Kg^{-1}.m^3.s^{-2}$	$Kg^2.m.s$	$Kg.m^{-1}.s^{-1}$	$Kg.m^{-1}.s^{-2}$

 $(\mathbf{Q10})$ The **Dimension** of \mathbf{G} is:

A	В	С	D	E
$M^2 L^2 T^2$	$M L^2 T^2$	$[M^2 \ L \ T]$	$[M \ L^{-1} \ T^{-1}]$	$[M^{-1} L^3 T^{-2}]$

Section 3 (Conversion of units): Q11, Q12 and Q13.

(Q11) One mile (1 mi) is equivalent to 1609 m so 36 mph is approximately equals to:

A	В	С	D	Е
$36 \text{ m.}s^{-1}$	$16.09 \text{ m.}s^{-1}$	$160.9 \text{ m.}s^{-1}$	$10 \text{ m.}s^{-1}$	$20 \text{ m.}s^{-1}$

(Q12) A sphere with a radius of r = 45 mm has a volume of:

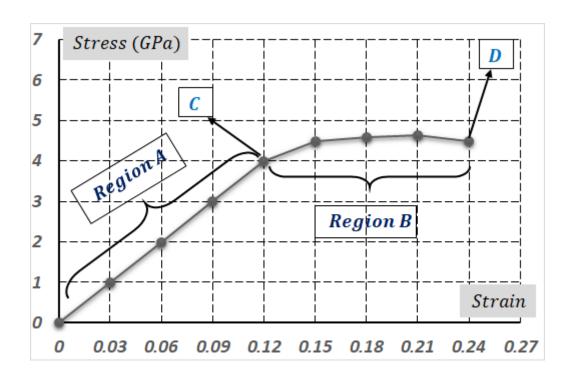
A	В	С	D	E
$2 \times 10^{-9} m^3$	$8 \times 10^{-6} \ m^3$	$6 \times 10^{-3} \ m^3$	$3.817 \times 10^{-4} \ m^3$	$8 \times 10^{-9} \ m^3$

(Q13) A square with an edge of exactly 22 mm has an area of:

A	В	С	D	Е
$4.84 \times 10^{-4} \ m^2$	$4.84 \times 10^{-2} \ m^2$	$4.84 \ m^2$	$4.4 \times 10^{-4} \ m^2$	$4.84 \times 10^{-6} \ m^2$

Phy 1010 page 2/5 Alternate Monthly 1

Section 4 (Concepts and definitions): Q14, Q15, Q16 and Q17.


Complete the statements with the choices below.

A	В	С	D	Е
the fractional change	force	Young's modulus	Kilometer (Km)	meter (m)

- (Q14) Stress is the external acting on the object per unit cross-sectional area.
- (Q15) The bulk modulus is a proportionality constant that relates the pressure acting on an object to.....in volume.
- (Q16)measures the resistance of solids to change in their length.
- (Q17) In the (SI), the Length unit is

Section 5: ELASTIC MODULUS

Exercice 1 (Stress-strain curve): Answer the questions Q 18, Q 19, Q 20, Q 21 and Q 22

$(\mathbf{Q18})$ The Region A is:

A	В	С	D	E
elastic limit	elastic behavior	breaking point	plastic behavior	None of these

$(\mathbf{Q19})$ The Region B is:

A	В	С	D	E
elastic limit	elastic behavior	breaking point	plastic behavior	None of these

 $(\mathbf{Q20})$ The Point C is:

A	В	С	D	Е
elastic limit	elastic behavior	breaking point	plastic behavior	None of these

(Q21) The Point D is:

A	В	С	D	E
elastic limit	elastic behavior	breaking point	plastic behavior	None of these

(Q22) Evaluate Young's modulus for the material whose stress–strain curve is shown above

A	В	С	D	E
33.33 Pa	$3.333 \times 10^{10} \text{ Pa}$	$3.333 \times 10^7 \text{ Pa}$	7 GPa	0.27 Pa

Exercice 2 (Young's modulus): Answer the questions Q23, Q24, and Q25.

A $\mathbf{m} = 100 \text{ Kg}$ load is hung on a wire of length $\mathbf{L} = 4.00 \text{ m}$, cross sectional area $\mathbf{A} = \mathbf{1} \times 10^{-4} m^2$, and Young's modulus $\mathbf{8} \times 10^9 \text{ N}/m^2$.

(Q23) Find the value of the Stress:

A	В	\mathbf{C}	D	E
$9.8 \times 10^6 \text{ N/}m^2$	$1 \times 10^6 \text{ N/}m^2$	$9.8 \times 10^4 \text{ N/}m^2$	$1 \times 10^4 \text{ N/}m^2$	$8 \times 10^{10} \text{ N/}m^2$

(Q24) Calculate the change in length ΔL :

A	В	C	D	E
4.90 mm	$4.90~\mathrm{cm}$	$4.90~\mathrm{dm}$	0.49 mm	9.8 mm

(Q25) Find the Value of the Strain:

A	В	С	D	E
1.225×10^{-3}	8.163×10^{2}	7.84×10^{16}	1.276×10^{-17}	8×10^{10}

Exercice 3 (Shear Modulus): Answer the questions Q 26, Q 27, and Q 28

A shearing force of **50** N is applied to an aluminum rod with a length of **10** m, a cross-sectional area of 1×10^{-5} m^2 , and shear modulus of 2.5×10^{10} $N.m^{-2}$.

(Q26) Find the value of the Stress:

A	В	С	D	E
$5 \times 10^6 \text{ N/}m^2$	$1 \times 10^5 \; { m N}/m^2$	$1 \times 10^4 \text{ N/}m^2$	$1 \times 10^7 \text{ N/}m^2$	$1 \times 10^8 \text{ N/}m^2$

Phy 1010 page 4/5 Alternate Monthly 1

(Q27) Find the result displacement Δx :

A	В	С	D	Е
2 cm	2 mm	4 cm	4 mm	0.01

(Q28) Deduce the value the strain:

A	В	С	D	E
6×10^{-6}	4×10^{-5}	2×10^{-4}	7×10^{-5}	8×10^{-5}

Exercice 4 (Bulk Modulus): Answer the questions Q29 and Q30

A cubic box with an edge of exactly $\mathbf{a} = \mathbf{3}$ cm is made of material with a bulk modulus of $\mathbf{4.8} \times 10^5 \ \mathbf{N}/m^2$. This cubic box is subjected to a pressure $\mathbf{P} = \mathbf{1.6} \times 10^5 \ \mathbf{N}/m^2$.

(Q29) As a result of this stress applied, the change in volume ΔV of this cubic is approximately:

A	В	С	D	E
$9 cm^3$	$27~cm^3$	$18 \ cm^3$	$36 \ cm^3$	$64~cm^3$

(Q30) The edge of this box becomes approximatly:

A	В	\mathbf{C}	D	E
2.621 cm	4.242 cm	18 cm	$1.321~\mathrm{cm}$	$2.321~\mathrm{cm}$